Abstract

Optical parameters of simulated ambient individual ammonium sulfate and soot-mixed particles were calculated using the discrete-dipole approximation method with different model geometries. Knowledge of the mixing state and the approximation by a suited idealized geometry reduces the errors of the optical properties by ±50% to ±10%. The influence of the soot content and the mixing state on the optical properties of the total aerosol was estimated. For the total aerosol population, the size distribution and the absolute soot content had the largest influence. The exact geometry of the ammonium sulfate and soot-mixed particles can be neglected.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles

Thomas P. Ackerman and Owen B. Toon
Appl. Opt. 20(20) 3661-3668 (1981)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription