Abstract

In cavity ring-down spectroscopy (CRDS), residual or stress-induced birefringence (107106rad) of supermirrors will lift the polarization degeneracy of TEM00 modes and generate two new polarization eigenstates in the cavity with small resonant frequency splitting (0.1kHz); the new eigenstates are nearly linearly polarized. When both modes are excited simultaneously, the intracavity polarization state will evolve as the energy decays in the cavity. Without polarization analysis, such mode beating would not be observable. However, real supermirrors have a linear polarization-dependent loss (dichroism) that leads to a change in the loss rate as the polarization state evolves and thus to deviation from the expected single-exponential decay. We develop a model for the evolution of the intracavity polarization state and intensity for a cavity with both birefringence and polarization-dependent loss in the mirrors. We demonstrate, experimentally, that these parameters (both magnitudes and directions) can be extracted from a series of measurements of the cavity decay and depolarization of the transmitted light.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription