Abstract

We comment on a recent paper by Seshadri [Appl. Opt. 45, 5335 (2006)]. In the cited work the author utilized the so-named Felsen method in order to derive the full wave expression of a scalar Bessel–Gauss field, propagating in free space, originated from an assigned input distribution on the source plane z=0. As we show, the author’s obtained results do not correctly reproduce the aforesaid input field distribution, as, on the contrary, they have to do.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Seshadri, “Quality of paraxial electromagnetic beams,” Appl. Opt. 45, 5335-5345 (2006).
    [CrossRef] [PubMed]
  2. L. B. Felsen, “Evanescent waves,” J. Opt. Soc. Am. 66, 751-760(1976).
    [CrossRef]
  3. E. Heyman and L. B. Felsen, “Gaussian beam and pulsed beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics,” J. Opt. Soc. Am. A 18, 1588-1611 (2001).
    [CrossRef]
  4. G. S. Smith, Introduction to Classical Electromagnetic Radiation (Cambridge University, 1997).
  5. O. El Gawhary and S. Severini, “Degree of paraxiality for monochromatic light beams,” Opt. Lett. 33, 1360-1362 (2008).

2006

2001

1976

El Gawhary, O.

O. El Gawhary and S. Severini, “Degree of paraxiality for monochromatic light beams,” Opt. Lett. 33, 1360-1362 (2008).

Felsen, L. B.

Heyman, E.

Seshadri, S. R.

Severini, S.

O. El Gawhary and S. Severini, “Degree of paraxiality for monochromatic light beams,” Opt. Lett. 33, 1360-1362 (2008).

Smith, G. S.

G. S. Smith, Introduction to Classical Electromagnetic Radiation (Cambridge University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (14)

Equations on this page are rendered with MathJax. Learn more.

F ( x , y , 0 ) = F ( ρ , 0 ) = N exp ( γ ) J 0 ( β ρ ) exp ( ρ 2 w 0 2 ) ,
F ( ρ , 0 ) = N exp ( ρ 2 w 0 2 ) .
F ¯ ( η , 0 ) = N b k exp ( η 2 w 0 2 4 ) ,
F ¯ ( η , z ) = F ¯ ( η , 0 ) exp ( i ζ z ) ,
F ¯ p ( η , z ) = F ¯ ( η , 0 ) exp ( i k z ) exp ( i η 2 2 k z ) ,
F p ( ρ , z ) = exp ( i k z ) F ¯ ( η , 0 ) exp ( i η 2 z 2 k ) exp ( i k x x + i k y y ) d k x d k y .
F p ( ρ , z ) = exp ( i k z ) 0 F ¯ ( η , 0 ) exp ( i η 2 z 2 k ) η J 0 ( η ρ ) d η ,
F p ( ρ , z ) = N b k exp ( i k z ) 0 exp ( η 2 w 0 2 4 ) exp ( i η 2 z 2 k ) η J 0 ( η ρ ) d η .
F n p ( ρ , z ) = F ¯ ( η , 0 ) exp ( i ζ z ) exp ( i k x x + i k y y ) d k x d k y ,
F n p ( ρ , z ) = 0 F ¯ ( η , 0 ) exp ( i ζ z ) η J 0 ( η ρ ) d η = N b k 0 exp ( η 2 w 0 2 4 ) exp ( i ζ z ) η J 0 ( η ρ ) d η .
F ( ρ , z ) = N b exp ( k b ) 0 exp [ i ζ ( z i b ) ] ζ 1 η J 0 ( η ρ ) d η .
F ¯ ( η , z ) = N b exp ( k b ) ζ 1 exp [ i ζ ( z i b ) ] ,
F p ( ρ , 0 ) = F n p ( ρ , 0 ) = N exp ( ρ 2 w 0 2 ) .
1 ( λ 2 2 π w 0 ) exp ( 2 π 2 w 0 2 λ 2 ) erfi ( 2 π w 0 λ ) ,

Metrics