Abstract

Photoinduced anisotropy in bacteriorhodopsin (BR) film arises from the selective bleaching of BR molecules to linearly polarized light. The kinetics of photoinduced anisotropy excited by single and two pumping beams are investigated theoretically and experimentally. Compared with a single pumping beam (650nm), which produces comparatively small photoinduced anisotropy, dual-wavelength linearly polarized pumping beams (650 and 405nm) can obviously change the photoinduced anisotropy. When the polarization orientation of the 405nm pumping beam is perpendicular to that of the 650nm pumping beam, the peak and steady values of the photoinduced anisotropy kinetic curves are remarkably enhanced. But when the two pumping beams have parallel polarization orientation, the peak and steady values are restrained. At a fixed intensity of the 650nm pumping beam, there exists an optimal intensity for the 405nm pumping beam to maximize the value of the photoinduced anisotropy. The photoinduced transmittance of the polarizer-BR-analyzer system is modulated by the polarization angle of the 405nm pumping beam in an approximate-cosine form.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Thoma, N. Hampp, C. Brauchle, and D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651-653 (1991).
    [CrossRef] [PubMed]
  2. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. De Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
    [CrossRef]
  3. J. Khoury, C. L. Woods, and M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533-538 (1991).
    [CrossRef]
  4. Y. Huang, G. Siganakis, M. G. Moharam, and S. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
    [CrossRef]
  5. S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys. 95, 2246-2249 (2004).
    [CrossRef]
  6. N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755-1776(2000).
    [CrossRef]
  7. K. Clays, S. V. Elshocht, and A. Persoons, “Bacteriorhodopsin: a natural (nonlinear) photonic bandgap material,” Opt. Lett. 25, 1391-1393 (2000).
    [CrossRef]
  8. E. Korchemskaya, D. Stepanchikov, A. Druzhko, and T. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201-215 (1999).
    [CrossRef]
  9. Q. W. Song, Y. Zhang, R. R. Birge, and J. D. Downie, “Photoinduced anisotropy in bacteriorhodopsin films,” Proc. SPIE 3470, 226-230 (1998).
    [CrossRef]
  10. W. D. Koek, N. Bhattacharya, J. J. M. Braat, V. S. S. Chan, and J. Westerweel, “Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin,” Opt. Lett. 29, 101-103 (2004).
    [CrossRef] [PubMed]
  11. R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
    [CrossRef]
  12. E. Korchemskaya, “Photoinduced anisotropy in chemically modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).
    [CrossRef]
  13. R. C. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488-493 (1941).
    [CrossRef]
  14. T. Juchem, M. Sanio, and N. Hampp, “Bacteriorhodopsin modules for data processing with incoherent light,” Opt. Lett. 27, 1607-1609 (2002).
    [CrossRef]
  15. D. Timucin and J. Downie, “Phenomenological theory of photochromic media: optical data storage and processing with bacteriorhodopsin films,” J. Opt. Soc. Am. A 14, 3285-3299 (1997).
    [CrossRef]
  16. J. Downie and D. Timucin, “Modeling the grating-formation process in thick bacteriorhodopsin films,” Appl. Opt. 37, 2102-2111 (1998).
    [CrossRef]
  17. B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130(2003).
    [CrossRef]

2004

Y. Huang, G. Siganakis, M. G. Moharam, and S. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys. 95, 2246-2249 (2004).
[CrossRef]

W. D. Koek, N. Bhattacharya, J. J. M. Braat, V. S. S. Chan, and J. Westerweel, “Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin,” Opt. Lett. 29, 101-103 (2004).
[CrossRef] [PubMed]

2003

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130(2003).
[CrossRef]

2002

T. Juchem, M. Sanio, and N. Hampp, “Bacteriorhodopsin modules for data processing with incoherent light,” Opt. Lett. 27, 1607-1609 (2002).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. De Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

2000

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755-1776(2000).
[CrossRef]

K. Clays, S. V. Elshocht, and A. Persoons, “Bacteriorhodopsin: a natural (nonlinear) photonic bandgap material,” Opt. Lett. 25, 1391-1393 (2000).
[CrossRef]

E. Korchemskaya, “Photoinduced anisotropy in chemically modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).
[CrossRef]

1999

E. Korchemskaya, D. Stepanchikov, A. Druzhko, and T. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201-215 (1999).
[CrossRef]

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

1998

Q. W. Song, Y. Zhang, R. R. Birge, and J. D. Downie, “Photoinduced anisotropy in bacteriorhodopsin films,” Proc. SPIE 3470, 226-230 (1998).
[CrossRef]

J. Downie and D. Timucin, “Modeling the grating-formation process in thick bacteriorhodopsin films,” Appl. Opt. 37, 2102-2111 (1998).
[CrossRef]

1997

1991

R. Thoma, N. Hampp, C. Brauchle, and D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651-653 (1991).
[CrossRef] [PubMed]

J. Khoury, C. L. Woods, and M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533-538 (1991).
[CrossRef]

1941

Bhattacharya, N.

Birge, R. R.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Q. W. Song, Y. Zhang, R. R. Birge, and J. D. Downie, “Photoinduced anisotropy in bacteriorhodopsin films,” Proc. SPIE 3470, 226-230 (1998).
[CrossRef]

Braat, J. J. M.

Brauchle, C.

Chan, V. S. S.

Chen, G.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130(2003).
[CrossRef]

Clays, K.

Cowling, S. J.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys. 95, 2246-2249 (2004).
[CrossRef]

Cronin-Golomb, M.

J. Khoury, C. L. Woods, and M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533-538 (1991).
[CrossRef]

De Cristofano, B. S.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. De Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Downie, J.

Downie, J. D.

Q. W. Song, Y. Zhang, R. R. Birge, and J. D. Downie, “Photoinduced anisotropy in bacteriorhodopsin films,” Proc. SPIE 3470, 226-230 (1998).
[CrossRef]

Druzhko, A.

E. Korchemskaya, D. Stepanchikov, A. Druzhko, and T. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201-215 (1999).
[CrossRef]

Dyukova, T.

E. Korchemskaya, D. Stepanchikov, A. Druzhko, and T. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201-215 (1999).
[CrossRef]

Elshocht, S. V.

Gillespie, N. B.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Goodby, J. W.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys. 95, 2246-2249 (2004).
[CrossRef]

Hall, A. W.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys. 95, 2246-2249 (2004).
[CrossRef]

Hampp, N.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130(2003).
[CrossRef]

T. Juchem, M. Sanio, and N. Hampp, “Bacteriorhodopsin modules for data processing with incoherent light,” Opt. Lett. 27, 1607-1609 (2002).
[CrossRef]

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755-1776(2000).
[CrossRef]

R. Thoma, N. Hampp, C. Brauchle, and D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651-653 (1991).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, G. Siganakis, M. G. Moharam, and S. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

Izaguirre, E. W.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Jewell, S. A.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys. 95, 2246-2249 (2004).
[CrossRef]

Jones, R. C.

Juchem, T.

Khoury, J.

J. Khoury, C. L. Woods, and M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533-538 (1991).
[CrossRef]

Kimball, B. R.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. De Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Koek, W. D.

Korchemskaya, E.

E. Korchemskaya, “Photoinduced anisotropy in chemically modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).
[CrossRef]

E. Korchemskaya, D. Stepanchikov, A. Druzhko, and T. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201-215 (1999).
[CrossRef]

Kusnetzow, A.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Lawrence, A. F.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Lei, M.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130(2003).
[CrossRef]

Moharam, M. G.

Y. Huang, G. Siganakis, M. G. Moharam, and S. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

Nakashima, M.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. De Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Oesterhelt, D.

Persoons, A.

Rao, D. V. G. L. N.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. De Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Sambles, J. R.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys. 95, 2246-2249 (2004).
[CrossRef]

Sanio, M.

Schmidt, E.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Seetharaman, S.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Siganakis, G.

Y. Huang, G. Siganakis, M. G. Moharam, and S. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

Singh, D.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Song, Q. W.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Q. W. Song, Y. Zhang, R. R. Birge, and J. D. Downie, “Photoinduced anisotropy in bacteriorhodopsin films,” Proc. SPIE 3470, 226-230 (1998).
[CrossRef]

Stepanchikov, D.

E. Korchemskaya, D. Stepanchikov, A. Druzhko, and T. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201-215 (1999).
[CrossRef]

Stuart, J. A.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Thoma, R.

Timucin, D.

Wang, Y.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130(2003).
[CrossRef]

Westerweel, J.

Wise, K. J.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Woods, C. L.

J. Khoury, C. L. Woods, and M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533-538 (1991).
[CrossRef]

Wu, P.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. De Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Wu, S.

Y. Huang, G. Siganakis, M. G. Moharam, and S. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

Yao, B.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130(2003).
[CrossRef]

Zhang, Y.

Q. W. Song, Y. Zhang, R. R. Birge, and J. D. Downie, “Photoinduced anisotropy in bacteriorhodopsin films,” Proc. SPIE 3470, 226-230 (1998).
[CrossRef]

Zheng, Y.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130(2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. De Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Y. Huang, G. Siganakis, M. G. Moharam, and S. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

Chem. Rev.

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755-1776(2000).
[CrossRef]

J. Appl. Phys.

S. A. Jewell, J. R. Sambles, J. W. Goodby, A. W. Hall, and S. J. Cowling, “Optical waveguide characterization of a tristable antiferroelectric liquid crystal cell,” J. Appl. Phys. 95, 2246-2249 (2004).
[CrossRef]

J. Biol. Phys.

E. Korchemskaya, D. Stepanchikov, A. Druzhko, and T. Dyukova, “Mechanism of nonlinear photoinduced anisotropy in bacteriorhodopsin and its derivatives,” J. Biol. Phys. 24, 201-215 (1999).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. Chem. B

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, and K. J. Wise, “Biomolecular electronics: protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10746-10766 (1999).
[CrossRef]

Opt. Commun.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, and N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125-130(2003).
[CrossRef]

J. Khoury, C. L. Woods, and M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533-538 (1991).
[CrossRef]

Opt. Lett.

Opt. Mater.

E. Korchemskaya, “Photoinduced anisotropy in chemically modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).
[CrossRef]

Proc. SPIE

Q. W. Song, Y. Zhang, R. R. Birge, and J. D. Downie, “Photoinduced anisotropy in bacteriorhodopsin films,” Proc. SPIE 3470, 226-230 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental arrangement for measurement of photoinduced anisotropy: P and A, crossed polarizers; W, half-wave plate for 405 nm ; NF1, NF2, and NF3, variable attenuators.

Fig. 2
Fig. 2

Dependence of the P-BR-A system’s transmittance on the exposure time and the intensity of the 650 nm pumping beam. (a) Time-dependent curves at different pumping intensities and (b) peak and steady transmittances versus the pumping intensity.

Fig. 3
Fig. 3

Measured kinetic transmittance of the P-BR-A system as a function of the exposure time. Curves 1, 2, and 3 correspond to a single pumping beam, double mutually parallel pumping beams, and double mutually perpendicular pumping beams, respectively.

Fig. 4
Fig. 4

Influence of the intensity of a 405 nm pumping beam on the peak and steady values of the transmittance at an intensity of 25 mW / cm 2 of the 650 nm pumping beam. Curves 1 and 2 correspond to mutually parallel pumping beams and perpendicular pumping beams, respectively.

Fig. 5
Fig. 5

Dependences of the maximal steady transmittance and the optimal 405 nm pumping intensity on the 650 nm pumping beam intensity in the case of the two pumping beams having mutually perpendicular polarizations.

Fig. 6
Fig. 6

Transmittance of the P-BR-A system as a function of the polarization orientation of the 405 nm pumping beam. ϕ denotes the polarization angle of the 405 nm pumping beam with respect to the polarization direction of the 650 nm pumping beam.

Fig. 7
Fig. 7

Calculated angular distributions of molecules in the B and M states under excitation of single and double linearly polarized pumping beams. I 650 nm = 25 mW / cm 2 , I 405 nm = 5.1 mW / cm 2 . (a) Excited by a single 650 nm pumping beam, (b) excited by 650 and 405 nm pumping beams with mutually parallel polarizations, and (c) excited by 650 and 405 nm pumping beams with mutually perpendicular polarizations.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σ ( θ ) = σ cos 2 θ + σ sin 2 θ ,
M = 1 2 [ T exp ( i k n d ) + T exp ( i k n d ) T exp ( i k n d ) T exp ( i k n d ) T exp ( i k n d ) T exp ( i k n d ) T exp ( i k n d ) + T exp ( i k n d ) ] ,
T P - BR - A = 1 4 [ T 2 T T + T + 4 T T sin 2 ( π d λ ( n n ) ) ] .
Δ D = D 0 0 2 π N B ( θ ) ( cos 2 θ sin 2 θ ) / N 0 d θ ,
Δ n = Δ n 0 0 2 π N B ( θ ) ( | cos θ | | sin θ | ) / N 0 d θ ,
D + D = D 0 0 2 π N B ( θ ) / N 0 d θ ,
T P - BR - A = exp [ ln 10 2 ( D + D ) ] [ sinh 2 ( ln 10 4 Δ D ) + sin 2 ( π d λ Δ n ) ] .
N B ( θ ) t = k B N B ( θ ) + ( k M + k r ) N M ( θ ) ,
k B = i λ i I i σ i B ϕ B h c , k M = i λ i I i σ i M ϕ M h c ,
N B ( θ ) = N 0 2 π k M + k r k [ 1 exp ( k t ) ] + N 10 2 π exp ( k t ) ,
σ i ( λ ) = ln 10 ε i ( λ ) / N A ,
ε B ( λ ) = A B ( λ ) A B ( 568 nm ) × 63000 ( L · mol 1 · cm 1 ) ,
ε M ( λ ) = A M ( λ ) A M ( 409 nm ) × 48800 ( L · mol 1 · cm 1 ) ,

Metrics