Abstract

We investigate the simultaneous tomographic reconstruction of temperature and species concentration using hyperspectral absorption spectroscopy. Previous work on absorption tomography has relied on a small number of wavelengths, resulting in the requirement of a large number of projections and limited measurement capability. Here we develop a tomographic inversion method to exploit the increased spectral information content enabled by recent advancement in laser technologies. The simulation results clearly demonstrate that the use of hyperspectral absorption data significantly reduces the number of projections, enables simultaneous mapping of temperature and species concentration, and provides more stable reconstruction compared with traditional absorption tomographic techniques.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998).
    [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  3. K. Kohse-Hoinghaus and J. B. Jeffries, Applied combustion diagnostics (Taylor & Francis, 2002).
  4. P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multiangular absorption diagnostics of a turbulent argon-methane jet,” J. Energy 4, 70-77 (1980).
    [CrossRef]
  5. M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption measurements,” Combust. Sci. Technol. 60, 231-248 (1988).
    [CrossRef]
  6. H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 54, 131-136 (1985).
    [CrossRef]
  7. K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt. 34, 5492-5500 (1995).
  8. B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (mast-b-liquid),” Appl. Therm. Eng. 24, 1633-1653 (2004).
    [CrossRef]
  9. M. Ravichandran and F. C. Gouldin, “Reconstruction of smooth distributions from a limited number of projections,” Appl. Opt. 27, 4084-4097 (1988).
  10. R. Villarreal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44, 6786-6795 (2005).
    [CrossRef]
  11. A. M. Chojnacki, A. Sarma, G. J. Wolga, E. D. Torniainen, and F. C. Gouldin, “Infrared tomographic inversion for combustion and incineration,” Combust. Sci. Technol. 116, 583-606 (1996).
    [CrossRef]
  12. A. M. Chojnacki, G. J. Wolga, and F. C. Gouldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol. 134, 165-181 (1998).
    [CrossRef]
  13. J. A. Silver, D. J. Kane, and P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787-2801 (1995).
  14. F. Y. Zhang, T. Fujiwara, and K. Komurasaki, “Diode-laser tomography for arcjet plume reconstruction,” Appl. Opt. 40, 957-964 (2001).
    [CrossRef]
  15. F. Y. Zhang, K. Komurasaki, T. Iida, and T. Fujiwara, “Diagnostics of an argon arcjet plume with a diode laser,” Appl. Opt. 38, 1814-1822 (1999).
    [CrossRef]
  16. P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
    [CrossRef]
  17. F. Cuccoli, L. Facheris, S. Tanelli, and D. Giuli, “Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas,” IEEE Trans. Geosci. Remote Sens. 38, 1922-1935 (2000).
    [CrossRef]
  18. C. Belotti, F. Cuccoli, L. Facheris, and O. Vaselli, “An application of tomographic reconstruction of atmospheric CO2 over a volcanic site based on open-path IR laser measurements,” IEEE Trans. Geosci. Remote Sens. 41, 2629-2637 (2003).
    [CrossRef]
  19. W. Verkruysse and L. A. Todd, “Novel algorithm for tomographic reconstruction of atmospheric chemicals with sparse sampling,” Env. Sci. Technol. 39, 2247-2254 (2005).
    [CrossRef]
  20. L. A. Todd and R. Bhattacharyya, “Tomographic reconstruction of air pollutants: evaluation of measurement geometries,” Appl. Opt. 36, 7678-7688 (1997).
    [CrossRef]
  21. S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77, 111-118(2000).
    [CrossRef]
  22. P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44, 6578-6592 (2005).
    [CrossRef]
  23. L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619-1627 (2005).
  24. J. W. Walewski and S. T. Sanders, “Rapid wavelength scans over one octave and application to laser-induced fluorescence,” Opt. Lett. 30, 2394-2396 (2005).
    [CrossRef]
  25. M. P. Arroyo and R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode-laser,” Appl. Opt. 32, 6104-6116 (1993).
  26. F. Wübbeling and F. Natterer, Mathematical Methods in Image Reconstruction (SIAM, 2007).
  27. F. Natterer, “The mathematics of computerized tomography,” SIAM Classics in Applied Mathematics Series (SIAM, 2001).
  28. M. Hanke, H. W. Engl, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).
  29. A. Franchois, and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antennsas Propag. 45, 203-215 (1997).
    [CrossRef]
  30. E. L. Piccolomini and F. Zama, “The conjugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87-99 (1999).
    [CrossRef]
  31. L. Ma and W. Cai, Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, are preparing a manuscript to be called “Determine the optimal regularization parameters in hyperspectral tomography.”
  32. A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 13, 262-280 (1987).
    [CrossRef]
  33. P. C. Hansen, “Numerical tools for analysis and solution of Fredholm integral-equations of the 1st kind,” Inverse Probl. 8, 849-872 (1992).
    [CrossRef]
  34. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
    [CrossRef]
  35. C. T. Herman, Image Reconstruction from Projections--the Fundamentals of Computerized Tomography (Academic, 1980).
  36. I. G. Tsoulos and I. E. Lagaris, “Genanneal: Genetically modified simulated annealing,” Comput. Phys. Commun. 174, 846-851 (2006).
    [CrossRef]
  37. F. Mayinger and O. Feldmann, Optical Measurements: Techniques and Applications (Springer, 2001).

2006 (1)

I. G. Tsoulos and I. E. Lagaris, “Genanneal: Genetically modified simulated annealing,” Comput. Phys. Commun. 174, 846-851 (2006).
[CrossRef]

2005 (5)

2004 (2)

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (mast-b-liquid),” Appl. Therm. Eng. 24, 1633-1653 (2004).
[CrossRef]

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef]

2003 (2)

C. Belotti, F. Cuccoli, L. Facheris, and O. Vaselli, “An application of tomographic reconstruction of atmospheric CO2 over a volcanic site based on open-path IR laser measurements,” IEEE Trans. Geosci. Remote Sens. 41, 2629-2637 (2003).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
[CrossRef]

2001 (1)

2000 (2)

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77, 111-118(2000).
[CrossRef]

F. Cuccoli, L. Facheris, S. Tanelli, and D. Giuli, “Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas,” IEEE Trans. Geosci. Remote Sens. 38, 1922-1935 (2000).
[CrossRef]

1999 (2)

E. L. Piccolomini and F. Zama, “The conjugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87-99 (1999).
[CrossRef]

F. Y. Zhang, K. Komurasaki, T. Iida, and T. Fujiwara, “Diagnostics of an argon arcjet plume with a diode laser,” Appl. Opt. 38, 1814-1822 (1999).
[CrossRef]

1998 (2)

A. M. Chojnacki, G. J. Wolga, and F. C. Gouldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol. 134, 165-181 (1998).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998).
[CrossRef]

1997 (2)

A. Franchois, and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antennsas Propag. 45, 203-215 (1997).
[CrossRef]

L. A. Todd and R. Bhattacharyya, “Tomographic reconstruction of air pollutants: evaluation of measurement geometries,” Appl. Opt. 36, 7678-7688 (1997).
[CrossRef]

1996 (1)

A. M. Chojnacki, A. Sarma, G. J. Wolga, E. D. Torniainen, and F. C. Gouldin, “Infrared tomographic inversion for combustion and incineration,” Combust. Sci. Technol. 116, 583-606 (1996).
[CrossRef]

1995 (2)

1993 (1)

1992 (1)

P. C. Hansen, “Numerical tools for analysis and solution of Fredholm integral-equations of the 1st kind,” Inverse Probl. 8, 849-872 (1992).
[CrossRef]

1988 (2)

M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption measurements,” Combust. Sci. Technol. 60, 231-248 (1988).
[CrossRef]

M. Ravichandran and F. C. Gouldin, “Reconstruction of smooth distributions from a limited number of projections,” Appl. Opt. 27, 4084-4097 (1988).

1987 (1)

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 13, 262-280 (1987).
[CrossRef]

1985 (1)

H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 54, 131-136 (1985).
[CrossRef]

1980 (1)

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multiangular absorption diagnostics of a turbulent argon-methane jet,” J. Energy 4, 70-77 (1980).
[CrossRef]

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998).
[CrossRef]

Arroyo, M. P.

Belotti, C.

C. Belotti, F. Cuccoli, L. Facheris, and O. Vaselli, “An application of tomographic reconstruction of atmospheric CO2 over a volcanic site based on open-path IR laser measurements,” IEEE Trans. Geosci. Remote Sens. 41, 2629-2637 (2003).
[CrossRef]

Bhattacharyya, R.

Cai, W.

L. Ma and W. Cai, Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, are preparing a manuscript to be called “Determine the optimal regularization parameters in hyperspectral tomography.”

Carey, S. J.

Chojnacki, A. M.

A. M. Chojnacki, G. J. Wolga, and F. C. Gouldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol. 134, 165-181 (1998).
[CrossRef]

A. M. Chojnacki, A. Sarma, G. J. Wolga, E. D. Torniainen, and F. C. Gouldin, “Infrared tomographic inversion for combustion and incineration,” Combust. Sci. Technol. 116, 583-606 (1996).
[CrossRef]

Chung, K. B.

Clough, E.

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77, 111-118(2000).
[CrossRef]

Colbourne, S. M.

Corana, A.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 13, 262-280 (1987).
[CrossRef]

Crossley, S. D.

Cuccoli, F.

C. Belotti, F. Cuccoli, L. Facheris, and O. Vaselli, “An application of tomographic reconstruction of atmospheric CO2 over a volcanic site based on open-path IR laser measurements,” IEEE Trans. Geosci. Remote Sens. 41, 2629-2637 (2003).
[CrossRef]

F. Cuccoli, L. Facheris, S. Tanelli, and D. Giuli, “Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas,” IEEE Trans. Geosci. Remote Sens. 38, 1922-1935 (2000).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

Emmerman, P. J.

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multiangular absorption diagnostics of a turbulent argon-methane jet,” J. Energy 4, 70-77 (1980).
[CrossRef]

Engl, H. W.

M. Hanke, H. W. Engl, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).

Facheris, L.

C. Belotti, F. Cuccoli, L. Facheris, and O. Vaselli, “An application of tomographic reconstruction of atmospheric CO2 over a volcanic site based on open-path IR laser measurements,” IEEE Trans. Geosci. Remote Sens. 41, 2629-2637 (2003).
[CrossRef]

F. Cuccoli, L. Facheris, S. Tanelli, and D. Giuli, “Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas,” IEEE Trans. Geosci. Remote Sens. 38, 1922-1935 (2000).
[CrossRef]

Franchois, A.

A. Franchois, and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antennsas Propag. 45, 203-215 (1997).
[CrossRef]

Fujiwara, T.

Garcia-Stewart, C. A.

Gillet, B.

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (mast-b-liquid),” Appl. Therm. Eng. 24, 1633-1653 (2004).
[CrossRef]

Giuli, D.

F. Cuccoli, L. Facheris, S. Tanelli, and D. Giuli, “Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas,” IEEE Trans. Geosci. Remote Sens. 38, 1922-1935 (2000).
[CrossRef]

Goulard, R.

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multiangular absorption diagnostics of a turbulent argon-methane jet,” J. Energy 4, 70-77 (1980).
[CrossRef]

Gouldin, F. C.

A. M. Chojnacki, G. J. Wolga, and F. C. Gouldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol. 134, 165-181 (1998).
[CrossRef]

A. M. Chojnacki, A. Sarma, G. J. Wolga, E. D. Torniainen, and F. C. Gouldin, “Infrared tomographic inversion for combustion and incineration,” Combust. Sci. Technol. 116, 583-606 (1996).
[CrossRef]

K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt. 34, 5492-5500 (1995).

M. Ravichandran and F. C. Gouldin, “Reconstruction of smooth distributions from a limited number of projections,” Appl. Opt. 27, 4084-4097 (1988).

M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption measurements,” Combust. Sci. Technol. 60, 231-248 (1988).
[CrossRef]

Greenberg, P. S.

Hanke, M.

M. Hanke, H. W. Engl, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).

Hansen, P. C.

P. C. Hansen, “Numerical tools for analysis and solution of Fredholm integral-equations of the 1st kind,” Inverse Probl. 8, 849-872 (1992).
[CrossRef]

Hanson, R. K.

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
[CrossRef]

M. P. Arroyo and R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode-laser,” Appl. Opt. 32, 6104-6116 (1993).

Hardalupas, Y.

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (mast-b-liquid),” Appl. Therm. Eng. 24, 1633-1653 (2004).
[CrossRef]

Herman, C. T.

C. T. Herman, Image Reconstruction from Projections--the Fundamentals of Computerized Tomography (Academic, 1980).

Hertz, H. M.

H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 54, 131-136 (1985).
[CrossRef]

Hindle, F. P.

Hurr, W. J.

Iida, T.

Jeffries, J. B.

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
[CrossRef]

K. Kohse-Hoinghaus and J. B. Jeffries, Applied combustion diagnostics (Taylor & Francis, 2002).

Kane, D. J.

Kavounides, C.

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (mast-b-liquid),” Appl. Therm. Eng. 24, 1633-1653 (2004).
[CrossRef]

Kim, T.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619-1627 (2005).

Kohse-Hoinghaus, K.

K. Kohse-Hoinghaus and J. B. Jeffries, Applied combustion diagnostics (Taylor & Francis, 2002).

Komurasaki, K.

Kranendonk, L. A.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619-1627 (2005).

Lagaris, I. E.

I. G. Tsoulos and I. E. Lagaris, “Genanneal: Genetically modified simulated annealing,” Comput. Phys. Commun. 174, 846-851 (2006).
[CrossRef]

Litt, T. J.

Liu, X.

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
[CrossRef]

Ma, L.

L. Ma and W. Cai, Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, are preparing a manuscript to be called “Determine the optimal regularization parameters in hyperspectral tomography.”

Marchesi, M.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 13, 262-280 (1987).
[CrossRef]

Martini, C.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 13, 262-280 (1987).
[CrossRef]

McCann, H.

McManus, B.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef]

Murray, S. C.

Natterer, F.

F. Wübbeling and F. Natterer, Mathematical Methods in Image Reconstruction (SIAM, 2007).

F. Natterer, “The mathematics of computerized tomography,” SIAM Classics in Applied Mathematics Series (SIAM, 2001).

Nelson, D.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef]

Neubauer, A.

M. Hanke, H. W. Engl, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).

Ozanyan, K. B.

Paci, P.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef]

Pegrum, S. H.

Piccolomini, E. L.

E. L. Piccolomini and F. Zama, “The conjugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87-99 (1999).
[CrossRef]

Pichot, C.

A. Franchois, and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antennsas Propag. 45, 203-215 (1997).
[CrossRef]

Ravichandran, M.

M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption measurements,” Combust. Sci. Technol. 60, 231-248 (1988).
[CrossRef]

M. Ravichandran and F. C. Gouldin, “Reconstruction of smooth distributions from a limited number of projections,” Appl. Opt. 27, 4084-4097 (1988).

Ridella, S.

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 13, 262-280 (1987).
[CrossRef]

Sanders, S. T.

J. W. Walewski and S. T. Sanders, “Rapid wavelength scans over one octave and application to laser-induced fluorescence,” Opt. Lett. 30, 2394-2396 (2005).
[CrossRef]

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619-1627 (2005).

Santoro, R. J.

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multiangular absorption diagnostics of a turbulent argon-methane jet,” J. Energy 4, 70-77 (1980).
[CrossRef]

Sarma, A.

A. M. Chojnacki, A. Sarma, G. J. Wolga, E. D. Torniainen, and F. C. Gouldin, “Infrared tomographic inversion for combustion and incineration,” Combust. Sci. Technol. 116, 583-606 (1996).
[CrossRef]

Semerjian, H. G.

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multiangular absorption diagnostics of a turbulent argon-methane jet,” J. Energy 4, 70-77 (1980).
[CrossRef]

Shorter, J.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef]

Silver, J. A.

Tanelli, S.

F. Cuccoli, L. Facheris, S. Tanelli, and D. Giuli, “Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas,” IEEE Trans. Geosci. Remote Sens. 38, 1922-1935 (2000).
[CrossRef]

Tanimura, S.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef]

Taylor, A. M. K. P.

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (mast-b-liquid),” Appl. Therm. Eng. 24, 1633-1653 (2004).
[CrossRef]

Todd, L. A.

W. Verkruysse and L. A. Todd, “Novel algorithm for tomographic reconstruction of atmospheric chemicals with sparse sampling,” Env. Sci. Technol. 39, 2247-2254 (2005).
[CrossRef]

L. A. Todd and R. Bhattacharyya, “Tomographic reconstruction of air pollutants: evaluation of measurement geometries,” Appl. Opt. 36, 7678-7688 (1997).
[CrossRef]

Torniainen, E. D.

A. M. Chojnacki, A. Sarma, G. J. Wolga, E. D. Torniainen, and F. C. Gouldin, “Infrared tomographic inversion for combustion and incineration,” Combust. Sci. Technol. 116, 583-606 (1996).
[CrossRef]

Tsoulos, I. G.

I. G. Tsoulos and I. E. Lagaris, “Genanneal: Genetically modified simulated annealing,” Comput. Phys. Commun. 174, 846-851 (2006).
[CrossRef]

Turner, P. J.

Varghese, P. L.

Vaselli, O.

C. Belotti, F. Cuccoli, L. Facheris, and O. Vaselli, “An application of tomographic reconstruction of atmospheric CO2 over a volcanic site based on open-path IR laser measurements,” IEEE Trans. Geosci. Remote Sens. 41, 2629-2637 (2003).
[CrossRef]

Verkruysse, W.

W. Verkruysse and L. A. Todd, “Novel algorithm for tomographic reconstruction of atmospheric chemicals with sparse sampling,” Env. Sci. Technol. 39, 2247-2254 (2005).
[CrossRef]

Villarreal, R.

Walewski, J. W.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619-1627 (2005).

J. W. Walewski and S. T. Sanders, “Rapid wavelength scans over one octave and application to laser-induced fluorescence,” Opt. Lett. 30, 2394-2396 (2005).
[CrossRef]

Winterbone, D. E.

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77, 111-118(2000).
[CrossRef]

Wolga, G. J.

A. M. Chojnacki, G. J. Wolga, and F. C. Gouldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol. 134, 165-181 (1998).
[CrossRef]

A. M. Chojnacki, A. Sarma, G. J. Wolga, E. D. Torniainen, and F. C. Gouldin, “Infrared tomographic inversion for combustion and incineration,” Combust. Sci. Technol. 116, 583-606 (1996).
[CrossRef]

K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt. 34, 5492-5500 (1995).

Wright, P.

Wübbeling, F.

F. Wübbeling and F. Natterer, Mathematical Methods in Image Reconstruction (SIAM, 2007).

Wyslouzil, B. E.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef]

Zahniser, M.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef]

Zama, F.

E. L. Piccolomini and F. Zama, “The conjugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87-99 (1999).
[CrossRef]

Zhang, F. Y.

Zhou, X.

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
[CrossRef]

Zvinevich, Y.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef]

ACM (Assoc. Comput. Mach.) Trans. Math. Software (1)

A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multimodal functions of continuous-variables with the simulated annealing algorithm,” ACM (Assoc. Comput. Mach.) Trans. Math. Software 13, 262-280 (1987).
[CrossRef]

Appl. Math. Comp. (1)

E. L. Piccolomini and F. Zama, “The conjugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87-99 (1999).
[CrossRef]

Appl. Opt. (9)

M. Ravichandran and F. C. Gouldin, “Reconstruction of smooth distributions from a limited number of projections,” Appl. Opt. 27, 4084-4097 (1988).

M. P. Arroyo and R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode-laser,” Appl. Opt. 32, 6104-6116 (1993).

L. A. Todd and R. Bhattacharyya, “Tomographic reconstruction of air pollutants: evaluation of measurement geometries,” Appl. Opt. 36, 7678-7688 (1997).
[CrossRef]

J. A. Silver, D. J. Kane, and P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787-2801 (1995).

K. B. Chung, F. C. Gouldin, and G. J. Wolga, “Experimental reconstruction of the spatial density distribution of a nonreacting flow with a small number of absorption measurements,” Appl. Opt. 34, 5492-5500 (1995).

F. Y. Zhang, K. Komurasaki, T. Iida, and T. Fujiwara, “Diagnostics of an argon arcjet plume with a diode laser,” Appl. Opt. 38, 1814-1822 (1999).
[CrossRef]

F. Y. Zhang, T. Fujiwara, and K. Komurasaki, “Diode-laser tomography for arcjet plume reconstruction,” Appl. Opt. 40, 957-964 (2001).
[CrossRef]

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44, 6578-6592 (2005).
[CrossRef]

R. Villarreal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44, 6786-6795 (2005).
[CrossRef]

Appl. Therm. Eng. (1)

B. Gillet, Y. Hardalupas, C. Kavounides, and A. M. K. P. Taylor, “Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (mast-b-liquid),” Appl. Therm. Eng. 24, 1633-1653 (2004).
[CrossRef]

Chem. Eng. J. (1)

S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Chemical species tomography by near infra-red absorption,” Chem. Eng. J. 77, 111-118(2000).
[CrossRef]

Combust. Sci. Technol. (3)

M. Ravichandran and F. C. Gouldin, “Retrieval of asymmetric temperature and concentration profiles from a limited number of absorption measurements,” Combust. Sci. Technol. 60, 231-248 (1988).
[CrossRef]

A. M. Chojnacki, A. Sarma, G. J. Wolga, E. D. Torniainen, and F. C. Gouldin, “Infrared tomographic inversion for combustion and incineration,” Combust. Sci. Technol. 116, 583-606 (1996).
[CrossRef]

A. M. Chojnacki, G. J. Wolga, and F. C. Gouldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol. 134, 165-181 (1998).
[CrossRef]

Comput. Phys. Commun. (1)

I. G. Tsoulos and I. E. Lagaris, “Genanneal: Genetically modified simulated annealing,” Comput. Phys. Commun. 174, 846-851 (2006).
[CrossRef]

Env. Sci. Technol. (1)

W. Verkruysse and L. A. Todd, “Novel algorithm for tomographic reconstruction of atmospheric chemicals with sparse sampling,” Env. Sci. Technol. 39, 2247-2254 (2005).
[CrossRef]

IEEE Trans. Antennsas Propag. (1)

A. Franchois, and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt method,” IEEE Trans. Antennsas Propag. 45, 203-215 (1997).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

F. Cuccoli, L. Facheris, S. Tanelli, and D. Giuli, “Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas,” IEEE Trans. Geosci. Remote Sens. 38, 1922-1935 (2000).
[CrossRef]

C. Belotti, F. Cuccoli, L. Facheris, and O. Vaselli, “An application of tomographic reconstruction of atmospheric CO2 over a volcanic site based on open-path IR laser measurements,” IEEE Trans. Geosci. Remote Sens. 41, 2629-2637 (2003).
[CrossRef]

Inverse Probl. (1)

P. C. Hansen, “Numerical tools for analysis and solution of Fredholm integral-equations of the 1st kind,” Inverse Probl. 8, 849-872 (1992).
[CrossRef]

J. Chem. Phys. (1)

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef]

J. Energy (1)

P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multiangular absorption diagnostics of a turbulent argon-methane jet,” J. Energy 4, 70-77 (1980).
[CrossRef]

Meas. Sci. Technol. (2)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562 (1998).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
[CrossRef]

Opt. Commun. (1)

H. M. Hertz, “Experimental determination of 2-D flame temperature fields by interferometric tomography,” Opt. Commun. 54, 131-136 (1985).
[CrossRef]

Opt. Lett. (1)

Proc. Combust. Inst. (1)

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619-1627 (2005).

Other (8)

F. Mayinger and O. Feldmann, Optical Measurements: Techniques and Applications (Springer, 2001).

C. T. Herman, Image Reconstruction from Projections--the Fundamentals of Computerized Tomography (Academic, 1980).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

K. Kohse-Hoinghaus and J. B. Jeffries, Applied combustion diagnostics (Taylor & Francis, 2002).

L. Ma and W. Cai, Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, are preparing a manuscript to be called “Determine the optimal regularization parameters in hyperspectral tomography.”

F. Wübbeling and F. Natterer, Mathematical Methods in Image Reconstruction (SIAM, 2007).

F. Natterer, “The mathematics of computerized tomography,” SIAM Classics in Applied Mathematics Series (SIAM, 2001).

M. Hanke, H. W. Engl, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Definition of the coordinate system and the discretization configuration.

Fig. 2
Fig. 2

Block diagram illustrating the inversion algorithm for hyperspectral tomography.

Fig. 3
Fig. 3

Temperature and concentration phantoms.

Fig. 4
Fig. 4

Evolution of the value of F, and the solution errors in T and X during the minimization using the SA algorithm. The SA algorithm is terminated when the largest change in T value is less than 0.1 K , and a γ T of 1 × 10 10 and a γ x of 1 × 10 2 are used.

Fig. 5
Fig. 5

Top: the reconstructed T and X profiles. Bottom: the reconstruction error defined as the difference between the reconstructions and the phantoms. Settings are the same as those specified in the caption of Fig. 4. The reconstructed T and X correspond to an e T of 1.44% and an e x of 4.87%, respectively.

Fig. 6
Fig. 6

Comparison between the reconstructions and the phantoms along the fourth column of the grid without and with uncertainties in the projections. The reconstructions with 0.5% relative uncertainties in the projections correspond to an e T of 1.92% and an e x of 6.35%.

Fig. 7
Fig. 7

Comparison of the reconstruction quality between the HT technique and a two-wavelength tomographic scheme at different noise levels in the projections.

Fig. 8
Fig. 8

Comparison of the reconstruction quality between the HT technique and a two-wavelength tomographic scheme when the projections contain 0.5% relative noise. Top: reconstructions from the HT technique. Bottom: reconstructions from the two-wavelength tomography scheme.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A i = + ln I t ( λ ) I 0 ( λ ) d λ = P · X · L · S ( T , λ i ) ,
S ( T , λ i ) = S ( T 0 , λ i ) · Q ( T ) Q ( T 0 ) · exp [ h c E k · ( 1 T 1 T 0 ) ] · 1 exp ( h c 2 k T λ i ) 1 exp ( h c 2 k T 0 λ i ) ,
A i = P a b X ( l ) · S [ T ( l ) , λ i ] · d l ,
p ( L j , λ i ) = P a b S [ T ( x , y ) , λ i ] · X ( x , y ) · d l ,
D ( T rec , X rec ) = j = 1 J i = 1 I [ p m ( L j , λ i ) p c ( L j , λ i ) ] 2 p m ( L j , λ i ) 2 ,
R T ( T ) = m = 1 M n = 1 N [ T m , n 1 8 ( T m 1 , n 1 + T m 1 , n + T m 1 , n + 1 + T m , n 1 + T m , n + 1 + T m + 1 , n 1 + T m + 1 , n + T m + 1 , n + 1 ) ] 2 .
F ( T rec , X rec ) = D ( T rec , X rec ) + γ T · R T ( T rec ) + γ X · R X ( X rec ) ,
p m = S [ T rec ( x , y ) , λ ] · X ,
e T = m = 1 M n = 1 N | T m , n rec T m , n | m = 1 M n = 1 N | T m , n | ,
e X = m = 1 M n = 1 N | X m , n rec X m , n | m = 1 M n = 1 N | X m , n | .

Metrics