Abstract

Although published sea surface infrared (IR) emissivity models have gained widespread acceptance for remote sensing applications, discrepancies have been identified against field observations obtained from IR Fourier transform spectrometers at view angles 40°. We therefore propose, in this two-part paper, an alternative approach for calculating surface-leaving IR radiance that treats both emissivity and atmospheric reflection in a systematic yet practical manner. This first part presents the theoretical basis, development, and computations of the proposed model.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313-329 (1988).
    [CrossRef]
  2. K. Yoshimori, K. Itoh, and Y. Ichioka, “Thermal radiative and reflective characteristics of a wind-roughened water surface,” J. Opt. Soc. Am. A 11, 1886-1893 (1994).
    [CrossRef]
  3. K. Yoshimori, K. Itoh, and Y. Ichioka, “Optical characteristics of a wind-roughened water surface: a two-dimensional theory,” Appl. Opt. 34, 6236-6247 (1995).
    [CrossRef] [PubMed]
  4. P. Watts, M. Allen, and T. Nightingale, “Sea surface emission and reflection for radiometric measurements made with the along-track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126-141 (1996).
    [CrossRef]
  5. X. Wu and W. L. Smith, “Emissivity of rough sea surface for 8-13 μm: modeling and validation,” Appl. Opt. 36, 1-11 (1997).
  6. D. E. Freund, R. I. Joseph, D. J. Donohue, and K. T. Constantikes, “Numerical computations of rough sea surface emissivity using the interaction probability density,” J. Opt. Soc. Am. A 14, 1836-1849 (1997).
    [CrossRef]
  7. J. A. Shaw and C. Marston, “Polarized infrared emissivity for a rough water surface,” Opt. Express 7, 375-380 (2000).
    [CrossRef] [PubMed]
  8. N. R. Nalli, W. L. Smith, and B. Huang, “Quasi-specular model for calculating the reflection of atmospheric emitted infrared radiation from a rough water surface,” Appl. Opt. 40, 1343-1353 (2001).
    [CrossRef]
  9. B. G. Henderson, J. Theiler, and P. Villeneuve, “The polarized emissivity of a wind-roughened sea surface: a Monte Carlo model,” Rem. Sens. Environ. 88, 453-467 (2003).
    [CrossRef]
  10. C. Bourlier, “Unpolarized infrared emissivity with shadow from anisotropic rough sea surfaces with non-Gaussian statistics,” Appl. Opt. 44, 4335-4349 (2005).
    [CrossRef] [PubMed]
  11. C. Bourlier, “Unpolarized emissivity with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band,” Appl. Opt. 45, 6241-6254 (2006).
    [PubMed]
  12. K. Masuda, “Infrared sea surface emissivity including multiple reflection effect for isotropic Gaussian slope distribution model,” Remote Sens. Environ. 103, 488-496 (2006).
    [CrossRef]
  13. K. Caillault, S. Fauqueux, C. Bourlier, P. Simoneau, and L. Labarre, “Multiresolution optical characteristics of rough sea surface in the infrared,” Appl. Opt. 46, 5471-5481 (2007).
    [CrossRef] [PubMed]
  14. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun's glitter,” J. Opt. Soc. Am. 44, 838-850 (1954).
    [CrossRef]
  15. C. Cox and W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63-78 (1955).
  16. W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
    [CrossRef]
  17. G. L. Stephens, Remote Sensing of the Lower Atmosphere: An Introduction (Oxford University, 1994), p. 523.
  18. P. van Delst, “JCSDA infrared sea surface emissivity model,” in Proceedings of the 13th International TOVS Study Conference (Sainte-Adèle, 2003).
  19. M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
    [CrossRef]
  20. P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The marine-atmospheric emitted radiance interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994-1013 (2001).
    [CrossRef]
  21. J. A. Hanafin and P. J. Minnett, “Measurements of the infrared emissivity of a wind-roughened sea surface,” Appl. Opt. 44, 398-411 (2005).
    [CrossRef] [PubMed]
  22. M. Sidran, “Broadband reflectance and emissivity of specular and rough water surfaces,” Appl. Opt. 20, 3176-3183(1981).
    [CrossRef] [PubMed]
  23. A. M. Závody, C. T. Mutlow, and D. T. Llewellyn-Jones, “A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer,” J. Geophys. Res. 100, 937-952 (1995).
    [CrossRef]
  24. S. Q. Kidder and T. H. Vonder Haar, Satellite Meteorology: An Introduction (Academic, 1995), p. 466.
  25. N. R. Nalli and W. L. Smith, “Improved remote sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527-10542 (1998).
    [CrossRef]
  26. X. L. Ma, Z. Wan, C. C. Moeller, W. P. Menzel, and L. E. Gumley, “Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from moderate-resolution imaging spectroradiometer thermal infrared data: extension of a two-step physical algorithm,” Appl. Opt. 41, 909-924 (2002).
    [CrossRef] [PubMed]
  27. I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004).
    [CrossRef]
  28. S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539-2557 (2005).
    [CrossRef]
  29. R. Niclòs, E. Valor, V. Caselles, C. Coll, and J. M. Sánchez, “In situ angular measurements of thermal infrared sea surface emissivity--validation of models,” Rem. Sens. Environ. 94, 83-93 (2005).
    [CrossRef]
  30. W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).
  31. C. J. R. Sheppard, “Imaging of random surfaces and inverse scattering in the Kirchhoff approximation,” Waves Random Media 8, 53-66 (1998).
    [CrossRef]
  32. P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72, 4643-4649 (1967).
    [CrossRef]
  33. P. M. Saunders, “Radiance of sea and sky in the infrared window 800-1200 cm−1,” J. Opt. Soc. Am. 58, 645-652(1968).
    [CrossRef]
  34. C. R. Zeisse, “Radiance of the ocean horizon,” J. Opt. Soc. Am. A 12, 2022-2030 (1995).
    [CrossRef]
  35. C. R. Zeisse, C. P. McGrath, K. M. Littfin, and H. G. Hughes, “Infrared radiance of the wind-ruffled sea,” J. Opt. Soc. Am. A 16, 1439-1452 (1999).
    [CrossRef]
  36. X. Wu and W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” Acta Meteorologica Sinica 10, 376-384 (1996).
  37. N. R. Nalli, P. J. Minnett, P. van Delst, C. D. Barnet, and M. D. Goldberg, “Developments in ocean infrared emissivity/reflection modeling,” in Remote Sensing of the Ocean, Sea Ice and Large Water Regions 2005, J. C. R.Bostater and R. Santoleri, eds., Vol. 5977 of Proceedings of SPIE (SPIE, 2005), p. 59770G.
  38. N. Ebuchi and S. Kizu, “Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers,” J. Oceanography 58, 477-486(2002).
    [CrossRef]
  39. C. C. Borel, “ARTEMISS--an algorithm to retrieve temperature and emissivity from hyper-spectral thermal image data,” Unclassified Report LA-UR-027907 (Los Alamos National Laboratory, 2003).
  40. S. A. Clough, M. J. Iacono, and J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761-15785(1992).
  41. L. Pontier and C. Dechambenoy, “Determination des constantes optiques de leau liquide entre 1 et 40 microns. Application au calcul de son pouvoir reflecteur et de son emissivite,” Ann. Geophys. 22, 633-641 (1966).
  42. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  43. H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656-1661 (1975).
    [CrossRef]
  44. D. J. Segelstein, “The complex refractive index of water,” Master's dissertation, (University of Missouri-Kansas City, 1981), p. 167.
  45. D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28, 1714-1719 (1989).
    [CrossRef] [PubMed]
  46. J. E. Bertie and Z. Lan, “Infrared intensities of liquids. XX. The intensity of the OH stretching band of liquid water revisited and the best current values of the optical constants of H2O (l) at 25 C between 15,000 and 1 cm−1,” Appl. Spectrosc. 50, 1047-1057 (1996).
    [CrossRef]
  47. D. Friedman, “Infrared characteristics of ocean water (1.5-15 μm),” Appl. Opt. 8, 2073-2078 (1969).
    [CrossRef] [PubMed]
  48. S. D. Smith, “Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature,” J. Geophys. Res. 93, 15467-15472 (1988).
    [CrossRef]
  49. X. Zeng, M. Zhao, R. E. Dickinson, and Y. He, “A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific,” J. Geophys. Res. 104, 1525-1536(1999).
    [CrossRef]
  50. R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers, 1988).

2007 (1)

2006 (3)

C. Bourlier, “Unpolarized emissivity with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band,” Appl. Opt. 45, 6241-6254 (2006).
[PubMed]

K. Masuda, “Infrared sea surface emissivity including multiple reflection effect for isotropic Gaussian slope distribution model,” Remote Sens. Environ. 103, 488-496 (2006).
[CrossRef]

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

2005 (5)

J. A. Hanafin and P. J. Minnett, “Measurements of the infrared emissivity of a wind-roughened sea surface,” Appl. Opt. 44, 398-411 (2005).
[CrossRef] [PubMed]

S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539-2557 (2005).
[CrossRef]

R. Niclòs, E. Valor, V. Caselles, C. Coll, and J. M. Sánchez, “In situ angular measurements of thermal infrared sea surface emissivity--validation of models,” Rem. Sens. Environ. 94, 83-93 (2005).
[CrossRef]

W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).

C. Bourlier, “Unpolarized infrared emissivity with shadow from anisotropic rough sea surfaces with non-Gaussian statistics,” Appl. Opt. 44, 4335-4349 (2005).
[CrossRef] [PubMed]

2004 (1)

I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004).
[CrossRef]

2003 (1)

B. G. Henderson, J. Theiler, and P. Villeneuve, “The polarized emissivity of a wind-roughened sea surface: a Monte Carlo model,” Rem. Sens. Environ. 88, 453-467 (2003).
[CrossRef]

2002 (2)

X. L. Ma, Z. Wan, C. C. Moeller, W. P. Menzel, and L. E. Gumley, “Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from moderate-resolution imaging spectroradiometer thermal infrared data: extension of a two-step physical algorithm,” Appl. Opt. 41, 909-924 (2002).
[CrossRef] [PubMed]

N. Ebuchi and S. Kizu, “Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers,” J. Oceanography 58, 477-486(2002).
[CrossRef]

2001 (2)

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The marine-atmospheric emitted radiance interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994-1013 (2001).
[CrossRef]

N. R. Nalli, W. L. Smith, and B. Huang, “Quasi-specular model for calculating the reflection of atmospheric emitted infrared radiation from a rough water surface,” Appl. Opt. 40, 1343-1353 (2001).
[CrossRef]

2000 (1)

1999 (2)

C. R. Zeisse, C. P. McGrath, K. M. Littfin, and H. G. Hughes, “Infrared radiance of the wind-ruffled sea,” J. Opt. Soc. Am. A 16, 1439-1452 (1999).
[CrossRef]

X. Zeng, M. Zhao, R. E. Dickinson, and Y. He, “A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific,” J. Geophys. Res. 104, 1525-1536(1999).
[CrossRef]

1998 (2)

C. J. R. Sheppard, “Imaging of random surfaces and inverse scattering in the Kirchhoff approximation,” Waves Random Media 8, 53-66 (1998).
[CrossRef]

N. R. Nalli and W. L. Smith, “Improved remote sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527-10542 (1998).
[CrossRef]

1997 (2)

1996 (4)

P. Watts, M. Allen, and T. Nightingale, “Sea surface emission and reflection for radiometric measurements made with the along-track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126-141 (1996).
[CrossRef]

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

X. Wu and W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” Acta Meteorologica Sinica 10, 376-384 (1996).

J. E. Bertie and Z. Lan, “Infrared intensities of liquids. XX. The intensity of the OH stretching band of liquid water revisited and the best current values of the optical constants of H2O (l) at 25 C between 15,000 and 1 cm−1,” Appl. Spectrosc. 50, 1047-1057 (1996).
[CrossRef]

1995 (3)

C. R. Zeisse, “Radiance of the ocean horizon,” J. Opt. Soc. Am. A 12, 2022-2030 (1995).
[CrossRef]

A. M. Závody, C. T. Mutlow, and D. T. Llewellyn-Jones, “A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer,” J. Geophys. Res. 100, 937-952 (1995).
[CrossRef]

K. Yoshimori, K. Itoh, and Y. Ichioka, “Optical characteristics of a wind-roughened water surface: a two-dimensional theory,” Appl. Opt. 34, 6236-6247 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

S. A. Clough, M. J. Iacono, and J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761-15785(1992).

1989 (1)

1988 (2)

S. D. Smith, “Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature,” J. Geophys. Res. 93, 15467-15472 (1988).
[CrossRef]

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313-329 (1988).
[CrossRef]

1981 (1)

1975 (1)

H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656-1661 (1975).
[CrossRef]

1973 (1)

1969 (1)

1968 (1)

1967 (1)

P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72, 4643-4649 (1967).
[CrossRef]

1966 (1)

L. Pontier and C. Dechambenoy, “Determination des constantes optiques de leau liquide entre 1 et 40 microns. Application au calcul de son pouvoir reflecteur et de son emissivite,” Ann. Geophys. 22, 633-641 (1966).

1955 (1)

C. Cox and W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63-78 (1955).

1954 (1)

Allen, M.

P. Watts, M. Allen, and T. Nightingale, “Sea surface emission and reflection for radiometric measurements made with the along-track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126-141 (1996).
[CrossRef]

Atlas, R.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Aumann, H. H.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Barnet, C.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Barnet, C. D.

N. R. Nalli, P. J. Minnett, P. van Delst, C. D. Barnet, and M. D. Goldberg, “Developments in ocean infrared emissivity/reflection modeling,” in Remote Sensing of the Ocean, Sea Ice and Large Water Regions 2005, J. C. R.Bostater and R. Santoleri, eds., Vol. 5977 of Proceedings of SPIE (SPIE, 2005), p. 59770G.

Barton, I. J.

I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004).
[CrossRef]

Bertie, J. E.

Best, F. A.

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The marine-atmospheric emitted radiance interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994-1013 (2001).
[CrossRef]

Blaisdell, J.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Borel, C. C.

C. C. Borel, “ARTEMISS--an algorithm to retrieve temperature and emissivity from hyper-spectral thermal image data,” Unclassified Report LA-UR-027907 (Los Alamos National Laboratory, 2003).

Bourlier, C.

Brown, J.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

Brown, O.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

Brown, O. B.

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The marine-atmospheric emitted radiance interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994-1013 (2001).
[CrossRef]

Caillault, K.

Caselles, V.

R. Niclòs, E. Valor, V. Caselles, C. Coll, and J. M. Sánchez, “In situ angular measurements of thermal infrared sea surface emissivity--validation of models,” Rem. Sens. Environ. 94, 83-93 (2005).
[CrossRef]

Chahine, M. T.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Chen, L.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Clough, S. A.

S. A. Clough, M. J. Iacono, and J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761-15785(1992).

Coll, C.

R. Niclòs, E. Valor, V. Caselles, C. Coll, and J. M. Sánchez, “In situ angular measurements of thermal infrared sea surface emissivity--validation of models,” Rem. Sens. Environ. 94, 83-93 (2005).
[CrossRef]

Constantikes, K. T.

Cox, C.

Dechambenoy, C.

L. Pontier and C. Dechambenoy, “Determination des constantes optiques de leau liquide entre 1 et 40 microns. Application au calcul de son pouvoir reflecteur et de son emissivite,” Ann. Geophys. 22, 633-641 (1966).

Dickinson, R. E.

X. Zeng, M. Zhao, R. E. Dickinson, and Y. He, “A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific,” J. Geophys. Res. 104, 1525-1536(1999).
[CrossRef]

Divakarla, M.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Donlon, C. J.

I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004).
[CrossRef]

Donohue, D. J.

Downing, H. D.

H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656-1661 (1975).
[CrossRef]

Ebuchi, N.

N. Ebuchi and S. Kizu, “Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers,” J. Oceanography 58, 477-486(2002).
[CrossRef]

Fauqueux, S.

Feltz, W.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

Fetzer, E. J.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Freund, D. E.

Friedman, D.

Gautier, C.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Glew, M. D.

S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539-2557 (2005).
[CrossRef]

Goldberg, M.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Goldberg, M. D.

N. R. Nalli, P. J. Minnett, P. van Delst, C. D. Barnet, and M. D. Goldberg, “Developments in ocean infrared emissivity/reflection modeling,” in Remote Sensing of the Ocean, Sea Ice and Large Water Regions 2005, J. C. R.Bostater and R. Santoleri, eds., Vol. 5977 of Proceedings of SPIE (SPIE, 2005), p. 59770G.

Granger, S.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Gumley, L. E.

Hale, G. M.

Hanafin, J. A.

J. A. Hanafin and P. J. Minnett, “Measurements of the infrared emissivity of a wind-roughened sea surface,” Appl. Opt. 44, 398-411 (2005).
[CrossRef] [PubMed]

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The marine-atmospheric emitted radiance interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994-1013 (2001).
[CrossRef]

Hannon, S.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

He, Y.

X. Zeng, M. Zhao, R. E. Dickinson, and Y. He, “A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific,” J. Geophys. Res. 104, 1525-1536(1999).
[CrossRef]

Henderson, B. G.

B. G. Henderson, J. Theiler, and P. Villeneuve, “The polarized emissivity of a wind-roughened sea surface: a Monte Carlo model,” Rem. Sens. Environ. 88, 453-467 (2003).
[CrossRef]

Hook, S. J.

I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004).
[CrossRef]

Howell, H. B.

W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

Huang, B.

Hughes, H. G.

Iacono, M. J.

S. A. Clough, M. J. Iacono, and J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761-15785(1992).

Ichioka, Y.

Irion, F. W.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Itoh, K.

Jessup, A. T.

I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004).
[CrossRef]

Joseph, R. I.

Kakar, R.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Kalnay, E.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Kidder, S. Q.

S. Q. Kidder and T. H. Vonder Haar, Satellite Meteorology: An Introduction (Academic, 1995), p. 466.

Kizu, S.

N. Ebuchi and S. Kizu, “Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers,” J. Oceanography 58, 477-486(2002).
[CrossRef]

Knuteson, R. O.

W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The marine-atmospheric emitted radiance interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994-1013 (2001).
[CrossRef]

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

Labarre, L.

Lambrigtsen, B. H.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Lan, Z.

Larar, A. M.

W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).

Lee, S.-Y.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Littfin, K. M.

Llewellyn-Jones, D. T.

A. M. Závody, C. T. Mutlow, and D. T. Llewellyn-Jones, “A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer,” J. Geophys. Res. 100, 937-952 (1995).
[CrossRef]

Ma, X. L.

Maillet, K. A.

I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004).
[CrossRef]

Mango, S. A.

W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).

Marshall, J. L.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Marston, C.

Masuda, K.

K. Masuda, “Infrared sea surface emissivity including multiple reflection effect for isotropic Gaussian slope distribution model,” Remote Sens. Environ. 103, 488-496 (2006).
[CrossRef]

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313-329 (1988).
[CrossRef]

McGrath, C. P.

McKeown, W.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

McMillan, W. W.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

McMillin, L.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Menzel, W. P.

X. L. Ma, Z. Wan, C. C. Moeller, W. P. Menzel, and L. E. Gumley, “Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from moderate-resolution imaging spectroradiometer thermal infrared data: extension of a two-step physical algorithm,” Appl. Opt. 41, 909-924 (2002).
[CrossRef] [PubMed]

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

Minnett, P.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

Minnett, P. J.

J. A. Hanafin and P. J. Minnett, “Measurements of the infrared emissivity of a wind-roughened sea surface,” Appl. Opt. 44, 398-411 (2005).
[CrossRef] [PubMed]

I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004).
[CrossRef]

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The marine-atmospheric emitted radiance interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994-1013 (2001).
[CrossRef]

N. R. Nalli, P. J. Minnett, P. van Delst, C. D. Barnet, and M. D. Goldberg, “Developments in ocean infrared emissivity/reflection modeling,” in Remote Sensing of the Ocean, Sea Ice and Large Water Regions 2005, J. C. R.Bostater and R. Santoleri, eds., Vol. 5977 of Proceedings of SPIE (SPIE, 2005), p. 59770G.

Moeller, C. C.

Moncet, J. L.

S. A. Clough, M. J. Iacono, and J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761-15785(1992).

Munk, W.

Mutlow, C. T.

A. M. Závody, C. T. Mutlow, and D. T. Llewellyn-Jones, “A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer,” J. Geophys. Res. 100, 937-952 (1995).
[CrossRef]

Nalli, N. R.

N. R. Nalli, W. L. Smith, and B. Huang, “Quasi-specular model for calculating the reflection of atmospheric emitted infrared radiation from a rough water surface,” Appl. Opt. 40, 1343-1353 (2001).
[CrossRef]

N. R. Nalli and W. L. Smith, “Improved remote sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527-10542 (1998).
[CrossRef]

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

N. R. Nalli, P. J. Minnett, P. van Delst, C. D. Barnet, and M. D. Goldberg, “Developments in ocean infrared emissivity/reflection modeling,” in Remote Sensing of the Ocean, Sea Ice and Large Water Regions 2005, J. C. R.Bostater and R. Santoleri, eds., Vol. 5977 of Proceedings of SPIE (SPIE, 2005), p. 59770G.

Newman, S. M.

S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539-2557 (2005).
[CrossRef]

Niclòs, R.

R. Niclòs, E. Valor, V. Caselles, C. Coll, and J. M. Sánchez, “In situ angular measurements of thermal infrared sea surface emissivity--validation of models,” Rem. Sens. Environ. 94, 83-93 (2005).
[CrossRef]

Nightingale, T.

P. Watts, M. Allen, and T. Nightingale, “Sea surface emission and reflection for radiometric measurements made with the along-track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126-141 (1996).
[CrossRef]

Nightingale, T. J.

I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004).
[CrossRef]

Olsen, E. T.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Osborne, B. J.

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The marine-atmospheric emitted radiance interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994-1013 (2001).
[CrossRef]

Pagano, T. S.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Pontier, L.

L. Pontier and C. Dechambenoy, “Determination des constantes optiques de leau liquide entre 1 et 40 microns. Application au calcul de son pouvoir reflecteur et de son emissivite,” Ann. Geophys. 22, 633-641 (1966).

Querry, M. R.

Revercomb, H.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Revercomb, H. E.

W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

Rogers, S. M.

S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539-2557 (2005).
[CrossRef]

Rosenkranz, P.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Sánchez, J. M.

R. Niclòs, E. Valor, V. Caselles, C. Coll, and J. M. Sánchez, “In situ angular measurements of thermal infrared sea surface emissivity--validation of models,” Rem. Sens. Environ. 94, 83-93 (2005).
[CrossRef]

Saunders, P. M.

P. M. Saunders, “Radiance of sea and sky in the infrared window 800-1200 cm−1,” J. Opt. Soc. Am. 58, 645-652(1968).
[CrossRef]

P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72, 4643-4649 (1967).
[CrossRef]

Segelstein, D. J.

D. J. Segelstein, “The complex refractive index of water,” Master's dissertation, (University of Missouri-Kansas City, 1981), p. 167.

Shaw, J. A.

Sheppard, C. J. R.

C. J. R. Sheppard, “Imaging of random surfaces and inverse scattering in the Kirchhoff approximation,” Waves Random Media 8, 53-66 (1998).
[CrossRef]

Sidran, M.

Simoneau, P.

Smith, J. A.

S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539-2557 (2005).
[CrossRef]

Smith, S. D.

S. D. Smith, “Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature,” J. Geophys. Res. 93, 15467-15472 (1988).
[CrossRef]

Smith, W. L.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

N. R. Nalli, W. L. Smith, and B. Huang, “Quasi-specular model for calculating the reflection of atmospheric emitted infrared radiation from a rough water surface,” Appl. Opt. 40, 1343-1353 (2001).
[CrossRef]

N. R. Nalli and W. L. Smith, “Improved remote sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527-10542 (1998).
[CrossRef]

X. Wu and W. L. Smith, “Emissivity of rough sea surface for 8-13 μm: modeling and validation,” Appl. Opt. 36, 1-11 (1997).

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

X. Wu and W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” Acta Meteorologica Sinica 10, 376-384 (1996).

Smith, W. L. S.

W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).

W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).

Staelin, D.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Stephens, G. L.

G. L. Stephens, Remote Sensing of the Lower Atmosphere: An Introduction (Oxford University, 1994), p. 523.

Strow, L. L.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Stull, R. B.

R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers, 1988).

Susskind, J.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Takashima, T.

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313-329 (1988).
[CrossRef]

Takayama, Y.

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313-329 (1988).
[CrossRef]

Taylor, J. P.

S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539-2557 (2005).
[CrossRef]

Theiler, J.

B. G. Henderson, J. Theiler, and P. Villeneuve, “The polarized emissivity of a wind-roughened sea surface: a Monte Carlo model,” Rem. Sens. Environ. 88, 453-467 (2003).
[CrossRef]

Tobin, D.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Valor, E.

R. Niclòs, E. Valor, V. Caselles, C. Coll, and J. M. Sánchez, “In situ angular measurements of thermal infrared sea surface emissivity--validation of models,” Rem. Sens. Environ. 94, 83-93 (2005).
[CrossRef]

van Delst, P.

N. R. Nalli, P. J. Minnett, P. van Delst, C. D. Barnet, and M. D. Goldberg, “Developments in ocean infrared emissivity/reflection modeling,” in Remote Sensing of the Ocean, Sea Ice and Large Water Regions 2005, J. C. R.Bostater and R. Santoleri, eds., Vol. 5977 of Proceedings of SPIE (SPIE, 2005), p. 59770G.

P. van Delst, “JCSDA infrared sea surface emissivity model,” in Proceedings of the 13th International TOVS Study Conference (Sainte-Adèle, 2003).

Villeneuve, P.

B. G. Henderson, J. Theiler, and P. Villeneuve, “The polarized emissivity of a wind-roughened sea surface: a Monte Carlo model,” Rem. Sens. Environ. 88, 453-467 (2003).
[CrossRef]

Vonder Haar, T. H.

S. Q. Kidder and T. H. Vonder Haar, Satellite Meteorology: An Introduction (Academic, 1995), p. 466.

Wan, Z.

Watts, P.

P. Watts, M. Allen, and T. Nightingale, “Sea surface emission and reflection for radiometric measurements made with the along-track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126-141 (1996).
[CrossRef]

Weng, S.

Wieliczka, D. M.

Williams, D.

H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656-1661 (1975).
[CrossRef]

Wolf, W.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Wu, X.

X. Wu and W. L. Smith, “Emissivity of rough sea surface for 8-13 μm: modeling and validation,” Appl. Opt. 36, 1-11 (1997).

X. Wu and W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” Acta Meteorologica Sinica 10, 376-384 (1996).

Yoshimori, K.

Závody, A. M.

A. M. Závody, C. T. Mutlow, and D. T. Llewellyn-Jones, “A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer,” J. Geophys. Res. 100, 937-952 (1995).
[CrossRef]

Zeisse, C. R.

Zeng, X.

X. Zeng, M. Zhao, R. E. Dickinson, and Y. He, “A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific,” J. Geophys. Res. 104, 1525-1536(1999).
[CrossRef]

Zhao, M.

X. Zeng, M. Zhao, R. E. Dickinson, and Y. He, “A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific,” J. Geophys. Res. 104, 1525-1536(1999).
[CrossRef]

Zhou, D. K.

W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).

Zhou, L.

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

Acta Meteorologica Sinica (1)

X. Wu and W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” Acta Meteorologica Sinica 10, 376-384 (1996).

Ann. Geophys. (1)

L. Pontier and C. Dechambenoy, “Determination des constantes optiques de leau liquide entre 1 et 40 microns. Application au calcul de son pouvoir reflecteur et de son emissivite,” Ann. Geophys. 22, 633-641 (1966).

Appl. Opt. (12)

G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973).
[CrossRef] [PubMed]

D. Friedman, “Infrared characteristics of ocean water (1.5-15 μm),” Appl. Opt. 8, 2073-2078 (1969).
[CrossRef] [PubMed]

D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28, 1714-1719 (1989).
[CrossRef] [PubMed]

K. Yoshimori, K. Itoh, and Y. Ichioka, “Optical characteristics of a wind-roughened water surface: a two-dimensional theory,” Appl. Opt. 34, 6236-6247 (1995).
[CrossRef] [PubMed]

X. Wu and W. L. Smith, “Emissivity of rough sea surface for 8-13 μm: modeling and validation,” Appl. Opt. 36, 1-11 (1997).

N. R. Nalli, W. L. Smith, and B. Huang, “Quasi-specular model for calculating the reflection of atmospheric emitted infrared radiation from a rough water surface,” Appl. Opt. 40, 1343-1353 (2001).
[CrossRef]

C. Bourlier, “Unpolarized infrared emissivity with shadow from anisotropic rough sea surfaces with non-Gaussian statistics,” Appl. Opt. 44, 4335-4349 (2005).
[CrossRef] [PubMed]

C. Bourlier, “Unpolarized emissivity with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band,” Appl. Opt. 45, 6241-6254 (2006).
[PubMed]

K. Caillault, S. Fauqueux, C. Bourlier, P. Simoneau, and L. Labarre, “Multiresolution optical characteristics of rough sea surface in the infrared,” Appl. Opt. 46, 5471-5481 (2007).
[CrossRef] [PubMed]

J. A. Hanafin and P. J. Minnett, “Measurements of the infrared emissivity of a wind-roughened sea surface,” Appl. Opt. 44, 398-411 (2005).
[CrossRef] [PubMed]

M. Sidran, “Broadband reflectance and emissivity of specular and rough water surfaces,” Appl. Opt. 20, 3176-3183(1981).
[CrossRef] [PubMed]

X. L. Ma, Z. Wan, C. C. Moeller, W. P. Menzel, and L. E. Gumley, “Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from moderate-resolution imaging spectroradiometer thermal infrared data: extension of a two-step physical algorithm,” Appl. Opt. 41, 909-924 (2002).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Bull. Am. Meteorol. Soc. (1)

M. T. Chahine, T. S. Pagano, H. H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M. Divakarla, E. J. Fetzer, M. Goldberg, C. Gautier, S. Granger, S. Hannon, F. W. Irion, R. Kakar, E. Kalnay, B. H. Lambrigtsen, S.-Y. Lee, J. L. Marshall, W. W. McMillan, L. McMillin, E. T. Olsen, H. Revercomb, P. Rosenkranz, W. L. Smith, D. Staelin, L. L. Strow, J. Susskind, D. Tobin, W. Wolf, and L. Zhou, “AIRS: improving weather forecasting and providing new data on greenhouse gases,” Bull. Am. Meteorol. Soc. 87, 911-926 (2006).
[CrossRef]

J. Atmos. Ocean. Tech. (1)

I. J. Barton, P. J. Minnett, K. A. Maillet, C. J. Donlon, S. J. Hook, A. T. Jessup, and T. J. Nightingale, “The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results,” J. Atmos. Ocean. Tech. 21, 268-283 (2004).
[CrossRef]

J. Atmos. Ocean. Technol. (2)

P. J. Minnett, R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, “The marine-atmospheric emitted radiance interferometer (M-AERI): a high-accuracy, sea-going infrared spectroradiometer,” J. Atmos. Ocean. Technol. 18, 994-1013 (2001).
[CrossRef]

P. Watts, M. Allen, and T. Nightingale, “Sea surface emission and reflection for radiometric measurements made with the along-track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126-141 (1996).
[CrossRef]

J. Geophys. Res. (7)

N. R. Nalli and W. L. Smith, “Improved remote sensing of sea surface skin temperature using a physical retrieval method,” J. Geophys. Res. 103, 10527-10542 (1998).
[CrossRef]

P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72, 4643-4649 (1967).
[CrossRef]

A. M. Závody, C. T. Mutlow, and D. T. Llewellyn-Jones, “A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer,” J. Geophys. Res. 100, 937-952 (1995).
[CrossRef]

S. A. Clough, M. J. Iacono, and J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761-15785(1992).

S. D. Smith, “Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature,” J. Geophys. Res. 93, 15467-15472 (1988).
[CrossRef]

X. Zeng, M. Zhao, R. E. Dickinson, and Y. He, “A multiyear hourly sea surface skin temperature data set derived from the TOGA TAO bulk temperature and wind speed over the tropical Pacific,” J. Geophys. Res. 104, 1525-1536(1999).
[CrossRef]

H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656-1661 (1975).
[CrossRef]

J. Mar. Res. (1)

C. Cox and W. Munk, “Some problems in optical oceanography,” J. Mar. Res. 14, 63-78 (1955).

J. Oceanography (1)

N. Ebuchi and S. Kizu, “Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers,” J. Oceanography 58, 477-486(2002).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

Opt. Express (1)

Q. J. R. Meteorol. Soc. (1)

S. M. Newman, J. A. Smith, M. D. Glew, S. M. Rogers, and J. P. Taylor, “Temperature and salinity dependence of sea surface emissivity in the thermal infrared,” Q. J. R. Meteorol. Soc. 131, 2539-2557 (2005).
[CrossRef]

Rem. Sens. Environ. (2)

R. Niclòs, E. Valor, V. Caselles, C. Coll, and J. M. Sánchez, “In situ angular measurements of thermal infrared sea surface emissivity--validation of models,” Rem. Sens. Environ. 94, 83-93 (2005).
[CrossRef]

B. G. Henderson, J. Theiler, and P. Villeneuve, “The polarized emissivity of a wind-roughened sea surface: a Monte Carlo model,” Rem. Sens. Environ. 88, 453-467 (2003).
[CrossRef]

Remote Sens. Environ. (2)

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313-329 (1988).
[CrossRef]

K. Masuda, “Infrared sea surface emissivity including multiple reflection effect for isotropic Gaussian slope distribution model,” Remote Sens. Environ. 103, 488-496 (2006).
[CrossRef]

Waves Random Media (1)

C. J. R. Sheppard, “Imaging of random surfaces and inverse scattering in the Kirchhoff approximation,” Waves Random Media 8, 53-66 (1998).
[CrossRef]

Other (9)

W. L. S. Smith, D. K. Zhou, A. M. Larar, S. A. Mango, H. B. Howell, R. O. Knuteson, H. E. Revercomb, and W. L. S. Smith, Jr., “The NPOESS airborne sounding testbed interferometer--remotely sensed surface and atmospheric conditions during CLAMS,” J. Atmos. Sci. 62, 1118-1134(2005).

S. Q. Kidder and T. H. Vonder Haar, Satellite Meteorology: An Introduction (Academic, 1995), p. 466.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. R. Nalli, O. Brown, J. Brown, P. Minnett, and W. McKeown, “Observations of the infrared properties of the ocean: implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41-51 (1996).
[CrossRef]

G. L. Stephens, Remote Sensing of the Lower Atmosphere: An Introduction (Oxford University, 1994), p. 523.

P. van Delst, “JCSDA infrared sea surface emissivity model,” in Proceedings of the 13th International TOVS Study Conference (Sainte-Adèle, 2003).

C. C. Borel, “ARTEMISS--an algorithm to retrieve temperature and emissivity from hyper-spectral thermal image data,” Unclassified Report LA-UR-027907 (Los Alamos National Laboratory, 2003).

N. R. Nalli, P. J. Minnett, P. van Delst, C. D. Barnet, and M. D. Goldberg, “Developments in ocean infrared emissivity/reflection modeling,” in Remote Sensing of the Ocean, Sea Ice and Large Water Regions 2005, J. C. R.Bostater and R. Santoleri, eds., Vol. 5977 of Proceedings of SPIE (SPIE, 2005), p. 59770G.

D. J. Segelstein, “The complex refractive index of water,” Master's dissertation, (University of Missouri-Kansas City, 1981), p. 167.

R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Ray-trace schematic for modeling SLR from wave facets. The left wave facet, F 1 , shows incident rays originating from the sky ( p s = 0 ), whereas the right facet, F 2 , shows incident rays from the surface ( p s = 1 ) including SESR and SRSR contributions (note that for consistency with equations in the text, we use the same variables for F 1 and F 2 angles even though the magnitudes obviously differ). Here the radiance leaving F 1 would be given by I ν 1 ( θ 0 ) = [ 1 ρ ν ( Θ i ) ] B ν ( T s ) + ρ ν ( Θ i ) I ν a ( θ ) and the leaving F 2 would be I ν 2 ( θ 0 ) = [ 1 ρ ν ( Θ i ) ] B ν ( T s ) + ρ ν ( Θ i ) I ν s , where I ν s [ I ν s e ( π θ ) + I ν s r ( π θ ) ] .

Fig. 2
Fig. 2

Ensemble-mean facet geometries for the published mean square slope PDFs of Cox and Munk [15] (top plots) and Ebuchi and Kizu [38] (bottom plots). The left-hand plots show Θ ¯ i calculated from Eq. (16). The right-hand plots show θ ¯ calculated from Eq. (17). Note the calculations are extended for observing angles at and below the horizon ( θ 0 90 ° ).

Fig. 3
Fig. 3

Probability of a facet-incident ray originating from surface, p s ( θ , σ 2 ) , defined by Eq. (21) versus the mean surface wind speed, U ¯ 10 , and facet incidence angle, θ.

Fig. 4
Fig. 4

Example of spectral minimizations for the three training atmospheres ( U ¯ 10 = 10 ms 1 , θ 0 = 55 ° , Ebuchi and Kizu [38] slope PDF, and Hale and Querry [42] refractive indices). The true T s for tropical, midlatitude summer, and subarctic summer atmospheres were set at 299.7 K , 294.2 K , and 287.2 K , respectively.

Fig. 5
Fig. 5

Derived effective incidence angle of ocean surface waves (mean of six published refractive indices) for the Cox and Munk [15] wave slope PDF. The top two and lower left-hand panels show the results for the individual atmospheres with the bottom right-hand panel showing the mean of these as the final result tabulated in Table 3.

Fig. 6
Fig. 6

Similar to Fig. 5 though for the Ebuchi and Kizu [38] wave slope PDF instead.

Fig. 7
Fig. 7

Approximate magnitude of SRSR contribution to the SLR ( U ¯ 10 = 10 ms 1 , θ 0 = 55 ° , Ebuchi and Kizu [38] slope PDF, and Hale and Querry [42] refractive indices).

Fig. 8
Fig. 8

Simulated SLR brightness temperature calc true ( T B calc T B true ) in the LWIR window for the tropical model atmosphere. As with previous figures, the results are shown for U ¯ 10 = 10 ms 1 , the Ebuchi and Kizu [38] slope PDF, and Hale and Querry [42] refractive indices. The blue curves show the results using the conventional SLR model, Eqs. (3, 14), the magenta curves show the results using the specular ensemble-mean angle SLR model, Eqs. (15, 16, 17), and the red curves show the results using the effective emissivity and reflection SLR model, Eqs. (27, 28).

Fig. 9
Fig. 9

Similar to Fig. 8 though for the midlatitude summer model atmosphere instead.

Fig. 10
Fig. 10

Similar to Fig. 8 though for the subarctic summer model atmosphere instead.

Fig. 11
Fig. 11

Similar to Fig. 8 though for the SWIR window regions instead.

Fig. 12
Fig. 12

Similar to Fig. 8 though for the SWIR window regions and midlatitude summer model atmosphere instead.

Fig. 13
Fig. 13

Similar to Fig. 8 though for the SWIR window regions and subarctic summer model atmosphere instead.

Fig. 14
Fig. 14

Simulated SLR brightness temperature calc true spectral bias plotted as a function of observing angle θ 0 and wind speed U ¯ 10 for the tropical model atmosphere. The simulation assumes the Ebuchi and Kizu [38] slope PDF and Hale and Querry [42] refractive indices. The top plots show the results using the conventional approximation, Eqs. (3, 14), the middle plots show the results using the specular ensemble-mean angle approximation, Eqs. (15, 16, 17), and the bottom plots show the results using the effective emissivity and reflection model, Eqs. (27, 28). The bias is defined as the spectral median of T B calc ( ν ) T B true ( ν ) in kelvin units. The left- and right-hand plots are for the LWIR and SWIR spectral bands bounded by [ 850 , 1314.8 ] cm 1 and [ 2016.3 , 2663.9 ] cm 1 , respectively.

Fig. 15
Fig. 15

Similar to Fig. 14 though showing the spectral variability defined by the robust standard deviation (i.e., the median absolute deviation divided by 0.6745) of T B calc ( ν ) T B true ( ν ) in kelvin units.

Tables (3)

Tables Icon

Table 1 Ensemble-Mean Facet Incidence Angle, Θ ¯ i a

Tables Icon

Table 2 Ensemble-Mean Zenith Incidence Angle, θ ¯ a

Tables Icon

Table 3 Mean Effective Incidence Angle, Θ ¯ i e a

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

R ν s ( θ 0 ) = ϵ ν ( θ 0 ) B ν ( T s ) + 2 0 π 2 r ν ( θ , θ 0 ) I ν a ( θ ) cos ( θ ) sin ( θ ) d θ ,
I ν a ( θ ) = T ν s 1 B ν [ T ( p ) ] d T ν ( p s , p ; θ ) , p s > p ,
R ν s ( θ 0 ) ϵ ν ( θ 0 ) B ν ( T s ) + r ν ( θ 0 ) I ν a ( θ 0 ) ,
ϵ ( N ν , Θ i ) = 1 ρ ( N ν , Θ i ) ,
ρ ( N ν , Θ i ) = 1 2 [ | ρ ( N ν , Θ i ) | 2 + | ρ ( N ν , Θ i ) | 2 ] ,
ϵ ¯ ( N ν , θ 0 , U ¯ ) = 2 μ 0 0 1 p ( μ n , σ 2 ) μ n 4 0 π [ 1 ρ ( N ν , Θ i ) ] cos ( Θ i ) d φ n d μ n ,
φ n 2 ( θ 0 , θ n ) = { π , cot θ 0 cot θ n 1 θ 0 = 0 ° arccos ( cot θ 0 cot θ n ) , 1 < cot θ 0 cot θ n 1 θ 0 > 0 ° 0 , - cot θ 0 cot θ n > 1 θ 0 > 0 ° .
B ν ( T s ) = 2 μ 0 1 S ( θ 0 , σ 2 ) μ n 1 1 μ n 4 p ( μ n , σ 2 ) 0 φ n 2 B ν ( T s ) cos ( Θ i ) d φ n d μ n ,
S ( θ 0 , σ 2 ) = 1 2 μ 0 1 μ n 1 1 μ n 4 p ( μ n , σ 2 ) 0 φ n 2 cos ( Θ i ) d φ n d μ n ,
P ( μ n , μ 0 , Θ i , σ 2 ) 2 μ 0 1 μ n 4 cos ( Θ i ) p ( μ n , σ 2 ) S ( θ 0 , σ 2 ) ,
S ( θ 0 , σ 2 ) = 2 [ 1 + erf ( v ) + ( v π ) 1 exp ( v 2 ) ] 1 ,
v ( θ 0 , σ 2 ) = cot ( θ 0 ) 2 σ 2 .
ρ ( N ν , Θ i , U ¯ ) ρ ( N ν , Θ i ) ρ ( N ν , Θ i ) p s ( θ ) ϵ ¯ ( N ν , π θ , U ¯ ) ,
ϵ ¯ + ( N ν , θ 0 , U ¯ ) = 1 μ n 1 1 0 φ n 2 ρ ( N ν , Θ i , U ¯ ) P ( μ n , μ 0 , Θ i , σ 2 ) d φ n d μ n .
R ν s ( θ 0 ) B ν ( T s ) ρ ν ( Θ ¯ i ) [ B ν ( T s ) I ν a ( θ ¯ ) ] ,
Θ ¯ i = μ n 1 1 0 φ n 2 Θ i P d φ n d μ n μ n 1 1 0 φ n 2 P d φ n d μ n = μ n 1 1 0 φ n 2 Θ i P d φ n d μ n ,
θ ¯ = μ n 1 1 0 φ n 2 θ P d φ n d μ n μ n 1 1 0 φ n 2 P d φ n d μ n = μ n 1 1 0 φ n 2 θ P d φ n d μ n ,
P 2 μ 0 1 μ n 4 p ( μ n ) 2 μ 0 1 μ n 1 1 μ n 4 p ( μ n ) φ n 2 ( θ 0 , θ n ) d μ n .
R ¯ ν s ( θ 0 ) = μ n 1 1 0 φ n 2 P ( μ n , μ 0 , Θ i ) { [ 1 ρ ν ( Θ i ) ] B ν ( T s ) + ρ ν ( Θ i ) I ν i ( θ ) } d φ n d μ n ,
= ϵ ¯ ν ( θ 0 ) B ν ( T s ) + μ n 1 1 0 φ n 2 ρ ν ( Θ i ) P ( μ n , μ 0 , Θ i ) I ν i ( θ ) d φ n d μ n ,
p s ( θ , σ 2 ) { 1 S ( θ , σ 2 ) , θ < π / 2 1 , θ π / 2 ,
I ν i ( θ ) = [ 1 p s ( θ , σ 2 ) ] I ν a ( θ ) + p s ( θ , σ 2 ) [ I ν s e ( π θ ) + I ν s r ( π θ ) ] ,
I ν s e ( π θ ) { 1 ρ ν [ Θ ¯ i ( π θ ) ] } B ν ( T s ) ,
I ν s r ( π θ ) ρ ν [ Θ ¯ i ( π θ ) ] I ν a [ θ ¯ ( π θ ) ] .
ϵ ν + ( θ ) [ 1 ρ ν ( Θ i ) ] + ρ ν ( Θ i ) p s ( θ , σ 2 ) { 1 ρ ν [ Θ ¯ i ( π θ ) ] } ,
R ¯ ν s ( θ 0 ) = ϵ ¯ ν + ( θ 0 ) B ν ( T s ) + μ n 1 1 0 φ n 2 ρ ν ( Θ i ) P ( μ n , μ 0 , Θ i ) { I ν a ( θ ) p s ( θ , σ 2 ) [ I ν a ( θ ) I ν s r ] } d φ n d μ n .
ε v ( θ 0 ) B ν ( T s ) + [ 1 ε ν ( θ 0 ) ] I ν a ( θ 0 ) R ¯ ν s ( θ 0 ) ,
ε ν ( θ 0 , U ¯ 10 , N ν ) 1 ρ [ Θ i e ( θ 0 , U ¯ 10 ) , N ν ] .
T ν s ( Θ i e ) = B ν 1 ( R ¯ ν s ( θ 0 ) ρ ν ( Θ i e ) I ν a ( θ 0 ) 1 ρ ν ( Θ i e ) ) .
1 n 1 ν [ T ν s ( Θ i e ) T s ¯ ( Θ i e ) ] 2 = min ,
1 n 1 ν δ T B ν ( Θ i e ) 2 = min ,
δ T B ν ( Θ i e ) = B ν 1 { [ 1 ρ ν ( Θ i e ) ] B ν ( T s ) + ρ ν ( Θ i e ) I ν a ( θ 0 ) } B ν 1 { R ¯ ν s ( θ 0 ) } ,
2 σ CM 2 = 0.003 + 0.00512 U ¯ ( z s ) , z s = 12.5 m ,
2 σ EK 2 = 2 [ 0.0101 + 0.00219 U ¯ ( z s ) ] , z s = 10.0 m ,
U ¯ ( z ) = u * k ln ( z z 0 ) ,
z 0 = α c g u * 2 + 0.11 υ u * 1 ,
u * = k U ¯ ( z s ) ln ( z s / z 0 ) .

Metrics