Abstract

We demonstrate that it is possible to reduce the focal spot size by inserting a uniform nonlinear thin film at the aperture of a focusing lens. The reduction of spot size is tunable by adjusting the incoming laser power. In comparison with the original diffraction spot, the transverse spot size can be reduced 0.65 times. The nonlinear thin film acts effectively as a Toraldo filter, and the phase and amplitude modulation stems from the laser-induced variances in the transmission of the thin film. The proposed technique removes the need of fabricating annular pupil filters.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426-435 (1952).
    [CrossRef]
  2. C. J. R. Sheppard and Z. S. Hegedus, “Axial behavior of pupil-plane filters,” J. Opt. Soc. Am. A 5, 643-647 (1988).
    [CrossRef]
  3. T. R. M. Sales, “Smallest focal spot,” Phys. Rev. Lett. 81, 3844-3837 (1998).
    [CrossRef]
  4. T. R. M. Sales and G. M. Morris, “Fundamental limits of optical super-resolution,” Opt. Lett. 22, 582-584 (1997).
    [CrossRef] [PubMed]
  5. I. Leiserson, S. G. Lipson, and V. Sara, “Super-resolution in far-field imaging,” Opt. Lett. 25, 209-211 (2000).
    [CrossRef]
  6. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sara, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245-247(2000).
    [CrossRef]
  7. H. Wang, L. Shi, G. Yuan, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
    [CrossRef]
  8. M. Yun, L. Liu, J. Sun, and D. Liu, “Three-dimensional super-resolution by three-zone complex pupil filters,” J. Opt. Soc. Am. A 22, 272-277 (2005).
    [CrossRef]
  9. Z. Zalevsky, A. Shemer, A. Zlotnik, E. B. Eliezer, and E. Marom, “All-optical axial super resolving imaging using a low-frequency binary-phase mask,” Opt. Express 14, 2631-2643 (2006).
    [CrossRef] [PubMed]
  10. D. M. de Juana, J. E. Oti, V. F. Canales, and M. P. Cagigal, “Design of super-resolving continuous phase filters,” Opt. Lett. 28, 607-609 (2003).
    [CrossRef] [PubMed]
  11. Y. Xu, J. Singh, C. J. R. Sheppard, and N. Chen, “Ultra long high resolution beam by multi-zone rotationally symmetrical complex pupil filter,” Opt. Express 15, 6409-6412 (2007).
    [CrossRef] [PubMed]
  12. M. Born and E. Wolf, Principles of Optics (Pergamon, 1993), pp. 392-397.
  13. J. Wei, M. Xiao, and F. Zhang, “Supper-resolution with a nonlinear thin film: beam reshaping via internal multi-interference,” Appl. Phys. Lett. 89, 223126 (2006).
    [CrossRef]
  14. Y. Choi, J. Park, M. R. Kim, and W. Jhe, “Direct observation of self-focusing near the diffraction limit in polycrystalline silicon film,” Appl. Phys. Lett. 78, 856-858 (2001).
    [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  16. L. T. Jiang, T. C. Huang, C. R. Chiu, C. Y. Chang, and S. Y. Yang, “Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist,” Opt. Express 15, 12088-12094 (2007).
    [CrossRef] [PubMed]

2007 (2)

2006 (3)

Z. Zalevsky, A. Shemer, A. Zlotnik, E. B. Eliezer, and E. Marom, “All-optical axial super resolving imaging using a low-frequency binary-phase mask,” Opt. Express 14, 2631-2643 (2006).
[CrossRef] [PubMed]

H. Wang, L. Shi, G. Yuan, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

J. Wei, M. Xiao, and F. Zhang, “Supper-resolution with a nonlinear thin film: beam reshaping via internal multi-interference,” Appl. Phys. Lett. 89, 223126 (2006).
[CrossRef]

2005 (1)

2003 (1)

2001 (1)

Y. Choi, J. Park, M. R. Kim, and W. Jhe, “Direct observation of self-focusing near the diffraction limit in polycrystalline silicon film,” Appl. Phys. Lett. 78, 856-858 (2001).
[CrossRef]

2000 (2)

1998 (1)

T. R. M. Sales, “Smallest focal spot,” Phys. Rev. Lett. 81, 3844-3837 (1998).
[CrossRef]

1997 (1)

1988 (1)

1952 (1)

G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426-435 (1952).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993), pp. 392-397.

Cagigal, M. P.

Canales, V. F.

Chang, C. Y.

Chen, N.

Chiu, C. R.

Choi, Y.

Y. Choi, J. Park, M. R. Kim, and W. Jhe, “Direct observation of self-focusing near the diffraction limit in polycrystalline silicon film,” Appl. Phys. Lett. 78, 856-858 (2001).
[CrossRef]

Chong, T.

H. Wang, L. Shi, G. Yuan, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

de Juana, D. M.

Eliezer, E. B.

Hegedus, Z. S.

Huang, T. C.

Jhe, W.

Y. Choi, J. Park, M. R. Kim, and W. Jhe, “Direct observation of self-focusing near the diffraction limit in polycrystalline silicon film,” Appl. Phys. Lett. 78, 856-858 (2001).
[CrossRef]

Jiang, L. T.

Juskaitis, R.

Kim, M. R.

Y. Choi, J. Park, M. R. Kim, and W. Jhe, “Direct observation of self-focusing near the diffraction limit in polycrystalline silicon film,” Appl. Phys. Lett. 78, 856-858 (2001).
[CrossRef]

Laczik, Z. J.

Leiserson, I.

Lipson, S. G.

Liu, D.

Liu, L.

Marom, E.

Morris, G. M.

Neil, M. A. A.

Oti, J. E.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, J.

Y. Choi, J. Park, M. R. Kim, and W. Jhe, “Direct observation of self-focusing near the diffraction limit in polycrystalline silicon film,” Appl. Phys. Lett. 78, 856-858 (2001).
[CrossRef]

Sales, T. R. M.

Sara, V.

Shemer, A.

Sheppard, C. J. R.

Shi, L.

H. Wang, L. Shi, G. Yuan, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Singh, J.

Sun, J.

Tan, W.

H. Wang, L. Shi, G. Yuan, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Toraldo di Francia, G.

G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426-435 (1952).
[CrossRef]

Wang, H.

H. Wang, L. Shi, G. Yuan, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Wei, J.

J. Wei, M. Xiao, and F. Zhang, “Supper-resolution with a nonlinear thin film: beam reshaping via internal multi-interference,” Appl. Phys. Lett. 89, 223126 (2006).
[CrossRef]

Wilson, T.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993), pp. 392-397.

Xiao, M.

J. Wei, M. Xiao, and F. Zhang, “Supper-resolution with a nonlinear thin film: beam reshaping via internal multi-interference,” Appl. Phys. Lett. 89, 223126 (2006).
[CrossRef]

Xu, Y.

Yang, S. Y.

Yuan, G.

H. Wang, L. Shi, G. Yuan, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

Yun, M.

Zalevsky, Z.

Zhang, F.

J. Wei, M. Xiao, and F. Zhang, “Supper-resolution with a nonlinear thin film: beam reshaping via internal multi-interference,” Appl. Phys. Lett. 89, 223126 (2006).
[CrossRef]

Zlotnik, A.

Appl. Phys. Lett. (3)

H. Wang, L. Shi, G. Yuan, W. Tan, and T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006).
[CrossRef]

J. Wei, M. Xiao, and F. Zhang, “Supper-resolution with a nonlinear thin film: beam reshaping via internal multi-interference,” Appl. Phys. Lett. 89, 223126 (2006).
[CrossRef]

Y. Choi, J. Park, M. R. Kim, and W. Jhe, “Direct observation of self-focusing near the diffraction limit in polycrystalline silicon film,” Appl. Phys. Lett. 78, 856-858 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nuovo Cimento Suppl. (1)

G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426-435 (1952).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

T. R. M. Sales, “Smallest focal spot,” Phys. Rev. Lett. 81, 3844-3837 (1998).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993), pp. 392-397.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of laser tunable superresolution setup: 1, laser power regulator; 2, imaging lens; 3, pupil filter (composed of nonlinear thin film and substrate); and 4, focal plane.

Fig. 2
Fig. 2

Transmission with modulation (a) in amplitude and (b) in phase (solid curve) with Gaussian lenslike shift (dashed curve).

Fig. 3
Fig. 3

Superresolution focal spot in (a) top view mapping along axis, (b) axial cross section plot, (c) top view mapping at the focal plane, and (d) transverse cross section plot.

Fig. 4
Fig. 4

Cross section plots of the superresolution focal spots in (a) transverse direction and (b) axial direction with various laser powers. The focal spot of constant pupil is included for comparison.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

U ( v , u ) = 2 0 1 P ( ρ ) J 0 ( v ρ ) e i u ρ 2 2 ρ d ρ ,
v = 2 π λ r NA ,
u = 2 π λ z NA 2 ,
I ( v , 0 ) = ( 2 J 1 ( v ) v ) 2 ,
I ( 0 , u ) = [ sin ( u 4 ) u 4 ] 2 .
E ˜ ( r ) = E 0 exp ( r 2 w 0 2 ) ,
n ˜ ( r ) = n ( r ) + i k ( r ) = [ n 0 + n I I ( r ) ] + i λ 4 π [ α 0 + α I I ( r ) ] ,
U ˜ ( r ) = E ˜ ( r ) t ˜ ( r ) exp [ i Δ ϕ ( r ) ] ,
P ( r ) = U ˜ ( r ) E ˜ ( r ) = t ˜ ( r ) exp [ i Δ ϕ ( r ) ] ,
Δ ϕ ( r ) 4 n I P L λ α ( r ) w 0 2 { 1 exp [ α ( r ) d ] } exp ( 2 r 2 w 0 2 ) ,
I ( r ) = 1 2 ε 0 c n 0 | E ( r ) | 2   and   I ( 0 ) = 2 P L π w 0 2 ,
t = τ ( r ) e i δ = t 12 t 23 exp [ 2 i 2 π λ n ˜ ( r ) d ] 1 + r 12 r 23 exp [ 2 i 2 π λ n ˜ ( r ) d ] ,
P ( r ) = τ ( r ) exp { i [ δ ( r ) + 4 n I P L [ 1 e α ( r ) d ] λ α ( r ) w 0 2 × exp ( 2 r 2 w 0 2 ) ] } .

Metrics