Abstract

A finite-element model (FEM) is employed to study the pressure response of deformable elastic membranes used as tunable optical elements. The model is capable of determining in situ both the modulus and the prestrain from a measurement of peak deflection versus pressure. Given accurate values for modulus and prestrain, it is shown that the two parameters of a standard optical shape function (radius of curvature and conic constant) can be accurately predicted. The effects of prestrain in polydimethylsiloxane (PDMS) membranes are investigated in detail. It was found that prestrain reduces the sensitivity of the membrane shape to the details of the edge clamping. It also reduces the variation of the conic constant with changes in curvature. Thus the ability to control the prestrain as well as thickness and modulus is important to developing robust optical designs based on fluid-driven polymer lenses.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181-4186 (1993).
  2. M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
    [CrossRef]
  3. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).
  4. B. Berge and J. Perseux, “Variable focal length controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).
  5. T. S. Krupenkin, T. S. Yang, and P. Mach, “Tunable liquid micro-lens,” Appl. Phys. Lett. 82, 316-318 (2003).
    [CrossRef]
  6. A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44, 3238-3244 (2005).
    [CrossRef]
  7. D. Y. Zhang, V. Lien, Y. Berdichevstky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
    [CrossRef]
  8. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevstky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
    [CrossRef]
  9. R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
    [CrossRef]
  10. P. S. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
  11. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84, 4194-4196(2004).
    [CrossRef]
  12. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1 kHz bandwidth,” Opt. Express 12, 2138-2149 (2004).
  13. M. Sheplak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” ASME J. Appl. Mech. 65, 107-115 (1998).
  14. J. Walish, personal communication (MIT, 2007).
  15. J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
    [CrossRef]
  16. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunale-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031-8036 (2006).
    [CrossRef]

2006 (2)

P. S. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunale-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031-8036 (2006).
[CrossRef]

2005 (2)

A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44, 3238-3244 (2005).
[CrossRef]

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

2004 (5)

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84, 4194-4196(2004).
[CrossRef]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevstky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
[CrossRef]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1 kHz bandwidth,” Opt. Express 12, 2138-2149 (2004).

2003 (2)

D. Y. Zhang, V. Lien, Y. Berdichevstky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

T. S. Krupenkin, T. S. Yang, and P. Mach, “Tunable liquid micro-lens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

2000 (2)

G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).

B. Berge and J. Perseux, “Variable focal length controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).

1998 (1)

M. Sheplak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” ASME J. Appl. Mech. 65, 107-115 (1998).

1993 (1)

Agarwal, M.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Anderson, P. A.

Berdichevstky, Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevstky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevstky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Berge, B.

B. Berge and J. Perseux, “Variable focal length controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).

Chan, M. L.

P. S. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).

Chen, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Choi, J.

D. Y. Zhang, V. Lien, Y. Berdichevstky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Coane, P.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Commander, G.

G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).

Day, S. E.

G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).

Dharmatilleke, S.

P. S. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).

Dubasi, P.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

Dugundji, J.

M. Sheplak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” ASME J. Appl. Mech. 65, 107-115 (1998).

Fang, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Fox, D.

Gunasekaran, R. A.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Hashimoto, K.

Ishikawa, M.

Justis, N.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84, 4194-4196(2004).
[CrossRef]

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevstky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
[CrossRef]

Khaw, A. H.

P. S. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).

Krupenkin, T. S.

T. S. Krupenkin, T. S. Yang, and P. Mach, “Tunable liquid micro-lens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Lien, V.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevstky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevstky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Lo, Y. H.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevstky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84, 4194-4196(2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevstky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Mach, P.

T. S. Krupenkin, T. S. Yang, and P. Mach, “Tunable liquid micro-lens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Moran, P. S.

P. S. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).

Morita, S.

Oku, H.

Perseux, J.

B. Berge and J. Perseux, “Variable focal length controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).

Ren, H.

Rodriguez, I.

P. S. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).

Selviah, D. R.

G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).

Sheplak, M.

M. Sheplak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” ASME J. Appl. Mech. 65, 107-115 (1998).

Singh, A.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

Sugiura, N.

Tan, K. W.

P. S. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).

Varahramyan, K.

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Walish, J.

J. Walish, personal communication (MIT, 2007).

Wang, W.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Werber, A.

Wu, B.

Wu, S. T.

Yang, T. S.

T. S. Krupenkin, T. S. Yang, and P. Mach, “Tunable liquid micro-lens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Zappe, H.

Zhang, D. Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevstky, and Y. H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84, 4194-4196(2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevstky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

D. Y. Zhang, V. Lien, Y. Berdichevstky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

T. S. Krupenkin, T. S. Yang, and P. Mach, “Tunable liquid micro-lens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

P. S. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84, 4194-4196(2004).
[CrossRef]

ASME J. Appl. Mech. (1)

M. Sheplak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” ASME J. Appl. Mech. 65, 107-115 (1998).

Eur. Phys. J. E (1)

B. Berge and J. Perseux, “Variable focal length controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).

J. Micromech. Microeng. (2)

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Opt. Commun. (1)

G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000).

Opt. Express (2)

Opt. Lasers Eng. (1)

R. A. Gunasekaran, M. Agarwal, A. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluid controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

Other (1)

J. Walish, personal communication (MIT, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics