Abstract

A doubly shifted Raman laser using CH4 gas has been developed for 2.8μm generation, pumped by a Nd∶YAG laser with 65.5mJ at 17ns. A dichroically coated meniscus-type lens is modified to utilize the backward stimulated Brillouin scattering and backward Stokes beams from a previous laser design [Appl. Opt. 46, 5516–5521 (2007)]. A maximum output energy of 4.76mJ at 2.80μm wavelength has been achieved in the cascaded resonator. A maximum conversion efficiency of 8.9% has been achieved at a CH4 gas pressure of 600psi. The obtained spatial beam profile is quite smooth, and its output pulse width is 10ns.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. O. White, “High-efficiency backward Stokes Raman conversion in deuterium,” J. Opt. Soc. Am. B 7, 785-789 (1990).
    [CrossRef]
  2. K. Sentrayan, A. Michael, and V. Kushawaha, “Intense backward Raman lasers in CH4 and H2,” Appl. Opt. 32, 930-934(1993).
    [CrossRef] [PubMed]
  3. Y. H. Park, D. W. Lee, H. J. Kong, and Y. S. Kim, “Efficient Raman laser system using stimulated Brillouin scattering with different confocal parameters for CH4,” Appl. Opt. 46, 5516-5521 (2007).
    [CrossRef] [PubMed]
  4. D. J. Brink, H. P. Burger, T. N de Kock, J. A. Strauss, and D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd∶YAG laser light in methane,” J. Phys. D 19, 1421-1427 (1986).
    [CrossRef]
  5. Z. Chu, U. N. Singh, and T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation,” Opt. Commun. 75, 173-178 (1990).
    [CrossRef]
  6. K. Sentrayan, A. Michael, U. N. Singh, and V. S. Kushawaha, “Effect of buffer gas on the generation of eye-safe 1.54 μmradiation using the stimulated Raman scattering technique in CH4,” Opt. Laser Technol. 29, 275-279 (1997).
    [CrossRef]
  7. H. J. Kong, Y. G. Jeon, and J. K. Kim, “Efficient Raman conversion through backward stimulated Brillouin scattering,” Appl. Opt. 34, 993-995 (1995).
    [CrossRef] [PubMed]
  8. D. I. Chang, J. Y. Lee, and H. J. Kong, “Efficient first Stokes generation using a Brillouin resonator coupled with a Raman half resonator,” Jpn. J. Appl. Phys. 36, 4316-4319(1997).
    [CrossRef]
  9. C. Guntermann, V. Schulz-von der Gathen, and H. F. Dobele, “Raman shifting of Nd∶YAG laser radiation in methane: an efficient method to generate 3 μm radiation for medical uses,” Appl. Opt. 28, 135-138 (1989).
    [CrossRef] [PubMed]

2007

1997

K. Sentrayan, A. Michael, U. N. Singh, and V. S. Kushawaha, “Effect of buffer gas on the generation of eye-safe 1.54 μmradiation using the stimulated Raman scattering technique in CH4,” Opt. Laser Technol. 29, 275-279 (1997).
[CrossRef]

D. I. Chang, J. Y. Lee, and H. J. Kong, “Efficient first Stokes generation using a Brillouin resonator coupled with a Raman half resonator,” Jpn. J. Appl. Phys. 36, 4316-4319(1997).
[CrossRef]

1995

1993

1990

J. O. White, “High-efficiency backward Stokes Raman conversion in deuterium,” J. Opt. Soc. Am. B 7, 785-789 (1990).
[CrossRef]

Z. Chu, U. N. Singh, and T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation,” Opt. Commun. 75, 173-178 (1990).
[CrossRef]

1989

1986

D. J. Brink, H. P. Burger, T. N de Kock, J. A. Strauss, and D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd∶YAG laser light in methane,” J. Phys. D 19, 1421-1427 (1986).
[CrossRef]

Brink, D. J.

D. J. Brink, H. P. Burger, T. N de Kock, J. A. Strauss, and D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd∶YAG laser light in methane,” J. Phys. D 19, 1421-1427 (1986).
[CrossRef]

Burger, H. P.

D. J. Brink, H. P. Burger, T. N de Kock, J. A. Strauss, and D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd∶YAG laser light in methane,” J. Phys. D 19, 1421-1427 (1986).
[CrossRef]

Chang, D. I.

D. I. Chang, J. Y. Lee, and H. J. Kong, “Efficient first Stokes generation using a Brillouin resonator coupled with a Raman half resonator,” Jpn. J. Appl. Phys. 36, 4316-4319(1997).
[CrossRef]

Chu, Z.

Z. Chu, U. N. Singh, and T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation,” Opt. Commun. 75, 173-178 (1990).
[CrossRef]

de Kock, T. N

D. J. Brink, H. P. Burger, T. N de Kock, J. A. Strauss, and D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd∶YAG laser light in methane,” J. Phys. D 19, 1421-1427 (1986).
[CrossRef]

Dobele, H. F.

Guntermann, C.

Jeon, Y. G.

Kim, J. K.

Kim, Y. S.

Kong, H. J.

Kushawaha, V.

Kushawaha, V. S.

K. Sentrayan, A. Michael, U. N. Singh, and V. S. Kushawaha, “Effect of buffer gas on the generation of eye-safe 1.54 μmradiation using the stimulated Raman scattering technique in CH4,” Opt. Laser Technol. 29, 275-279 (1997).
[CrossRef]

Lee, D. W.

Lee, J. Y.

D. I. Chang, J. Y. Lee, and H. J. Kong, “Efficient first Stokes generation using a Brillouin resonator coupled with a Raman half resonator,” Jpn. J. Appl. Phys. 36, 4316-4319(1997).
[CrossRef]

Michael, A.

K. Sentrayan, A. Michael, U. N. Singh, and V. S. Kushawaha, “Effect of buffer gas on the generation of eye-safe 1.54 μmradiation using the stimulated Raman scattering technique in CH4,” Opt. Laser Technol. 29, 275-279 (1997).
[CrossRef]

K. Sentrayan, A. Michael, and V. Kushawaha, “Intense backward Raman lasers in CH4 and H2,” Appl. Opt. 32, 930-934(1993).
[CrossRef] [PubMed]

Park, Y. H.

Preussler, D. R.

D. J. Brink, H. P. Burger, T. N de Kock, J. A. Strauss, and D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd∶YAG laser light in methane,” J. Phys. D 19, 1421-1427 (1986).
[CrossRef]

Schulz-von der Gathen, V.

Sentrayan, K.

K. Sentrayan, A. Michael, U. N. Singh, and V. S. Kushawaha, “Effect of buffer gas on the generation of eye-safe 1.54 μmradiation using the stimulated Raman scattering technique in CH4,” Opt. Laser Technol. 29, 275-279 (1997).
[CrossRef]

K. Sentrayan, A. Michael, and V. Kushawaha, “Intense backward Raman lasers in CH4 and H2,” Appl. Opt. 32, 930-934(1993).
[CrossRef] [PubMed]

Singh, U. N.

K. Sentrayan, A. Michael, U. N. Singh, and V. S. Kushawaha, “Effect of buffer gas on the generation of eye-safe 1.54 μmradiation using the stimulated Raman scattering technique in CH4,” Opt. Laser Technol. 29, 275-279 (1997).
[CrossRef]

Z. Chu, U. N. Singh, and T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation,” Opt. Commun. 75, 173-178 (1990).
[CrossRef]

Strauss, J. A.

D. J. Brink, H. P. Burger, T. N de Kock, J. A. Strauss, and D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd∶YAG laser light in methane,” J. Phys. D 19, 1421-1427 (1986).
[CrossRef]

White, J. O.

Wilkerson, T. D.

Z. Chu, U. N. Singh, and T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation,” Opt. Commun. 75, 173-178 (1990).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. B

J. Phys. D

D. J. Brink, H. P. Burger, T. N de Kock, J. A. Strauss, and D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd∶YAG laser light in methane,” J. Phys. D 19, 1421-1427 (1986).
[CrossRef]

Jpn. J. Appl. Phys.

D. I. Chang, J. Y. Lee, and H. J. Kong, “Efficient first Stokes generation using a Brillouin resonator coupled with a Raman half resonator,” Jpn. J. Appl. Phys. 36, 4316-4319(1997).
[CrossRef]

Opt. Commun.

Z. Chu, U. N. Singh, and T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation,” Opt. Commun. 75, 173-178 (1990).
[CrossRef]

Opt. Laser Technol.

K. Sentrayan, A. Michael, U. N. Singh, and V. S. Kushawaha, “Effect of buffer gas on the generation of eye-safe 1.54 μmradiation using the stimulated Raman scattering technique in CH4,” Opt. Laser Technol. 29, 275-279 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the CH 4 Raman laser: R, rear mirror; QS, two dye Q switch (optical density, 0.48); BW, Brewster window; L 1 , dichroic coated meniscus lens of 250 mm focal length; L 2 , uncoated collimating Ca F 2 lens ( f = 250 mm ).

Fig. 2
Fig. 2

(a) Dependence of the pump energy on the electrical input energy ( E in ) for decompressed CH 4 gas with a cell length of 500 mm . (b) Dependence of the energies and the conversion-efficiencies for the Stokes lines on the electrical input energy ( E in ) for compressed CH 4 gas at a pressure of 600 psi . Values denoted by ▪ and • indicate the first-Stokes energy and second-Stokes energy ( E S 1 and E S 2 ), and □ and ○ indicate the conversion efficiencies of the first-Stokes and the second-Stokes ( η S 1 and η S 2 ).

Fig. 3
Fig. 3

Dependence of the energies and the conversion efficiencies for the Stokes lines on the compressed pressure of CH 4 gas at E in = 58 J . Values denoted by ▪ and • indicate the first-Stokes energy and the second-Stokes energy ( E S 1 and E S 2 ), and □ and ○ indicate the conversion efficiencies of the first-Stokes and second-Stokes ( η S 1 and η S 2 ).

Fig. 4
Fig. 4

Time-resolved SRS laser emission and a single pulse without a methane cell. Time scale: 10 ns /division. Without Raman cell, the pulse width of the pump beam is approximately 17 ns (FWHM). At the compressed CH 4 gas of 600 psi , the pulse width of the second-Stokes is approximately 10 ns . Time spacing of 4 ns at the first-Stokes pulse describes the round-trip time of the backward SBS beam at the Brillouin resonator.

Metrics