Abstract

A method for setting up a fiber Bragg grating (FBG) sensor which can measure the pointwise, out- of-plane or in-plane dynamic displacement is proposed. The proposed FBG sensor is reusable. A multiplexing demodulation system based on a single long-period fiber grating is used in this study. The experimental results of the steady-state motion for a multilayer piezoelectric actuator and the dynamic response of a cantilever beam subjected to impact loadings are presented. These results indicate that the proposed displacement sensor has the ability to measure the out-of-plane dynamic displacement with high sensitivity. Measurements for a piezoceramic plate excited by high frequency show that the proposed displacement sensor also has the ability to provide the in-plane dynamic displacement up to 20kHz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  2. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
    [CrossRef]
  3. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370-1372 (1993).
    [CrossRef] [PubMed]
  4. Y. L. Lo, “In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing,” IEEE Photon. Technol. Lett. 10, 1003-1005 (1998).
    [CrossRef]
  5. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236-238 (1992).
    [CrossRef]
  6. M. H. Song, S. Z. Yin, and P. B. Ruffin, “Fiber Bragg grating strain sensor demodulation with quadrature sampling of a Mach-Zehnder interferometer,” Appl. Opt. 39, 1106-1111(2000).
    [CrossRef]
  7. S. M. Melle, K. X. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).
    [CrossRef]
  8. M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength-division coupler,” Electron. Lett. 30, 75-77 (1994).
    [CrossRef]
  9. S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
    [CrossRef]
  10. S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461-1463 (1998).
    [CrossRef]
  11. R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
    [CrossRef]
  12. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
    [CrossRef]
  13. V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648-650 (1997).
    [CrossRef] [PubMed]
  14. C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
    [CrossRef]
  15. H. Y. Lin, J. H. Huang, and C. C. Ma, “Vibration analysis of piezoelectric materials by optical methods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1139-1149 (2002).
    [CrossRef]
  16. H. Y. Ling, K. T. Lau, W. Jin, and K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25-30 (2007).
    [CrossRef]

2007

H. Y. Ling, K. T. Lau, W. Jin, and K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25-30 (2007).
[CrossRef]

2002

H. Y. Lin, J. H. Huang, and C. C. Ma, “Vibration analysis of piezoelectric materials by optical methods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1139-1149 (2002).
[CrossRef]

2001

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

2000

1999

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

1998

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461-1463 (1998).
[CrossRef]

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Y. L. Lo, “In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing,” IEEE Photon. Technol. Lett. 10, 1003-1005 (1998).
[CrossRef]

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648-650 (1997).
[CrossRef] [PubMed]

1996

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

1994

M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength-division coupler,” Electron. Lett. 30, 75-77 (1994).
[CrossRef]

1993

1992

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236-238 (1992).
[CrossRef]

S. M. Melle, K. X. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Bennion, I.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370-1372 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Bhatia, V.

Campbell, D.

Chan, K. C.

H. Y. Ling, K. T. Lau, W. Jin, and K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25-30 (2007).
[CrossRef]

Choi, S. S.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461-1463 (1998).
[CrossRef]

Claus, R. O.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength-division coupler,” Electron. Lett. 30, 75-77 (1994).
[CrossRef]

Everall, L. A.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Fallon, R. W.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Hsiao, W. H.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Huang, J. H.

H. Y. Lin, J. H. Huang, and C. C. Ma, “Vibration analysis of piezoelectric materials by optical methods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1139-1149 (2002).
[CrossRef]

Jin, W.

H. Y. Ling, K. T. Lau, W. Jin, and K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25-30 (2007).
[CrossRef]

Kang, S. C.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461-1463 (1998).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength-division coupler,” Electron. Lett. 30, 75-77 (1994).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370-1372 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Kim, S.

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

Kim, S. Y.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461-1463 (1998).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Kwon, J.

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

Kwon, S. W.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461-1463 (1998).
[CrossRef]

Lau, K. T.

H. Y. Ling, K. T. Lau, W. Jin, and K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25-30 (2007).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lee, B.

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461-1463 (1998).
[CrossRef]

Lee, C. F.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Lee, C. K.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Lee, S. B.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461-1463 (1998).
[CrossRef]

Lin, C. C.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Lin, C. T.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Lin, H. Y.

H. Y. Lin, J. H. Huang, and C. C. Ma, “Vibration analysis of piezoelectric materials by optical methods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1139-1149 (2002).
[CrossRef]

Lin, S. C.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Lin, Y. C.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Ling, H. Y.

H. Y. Ling, K. T. Lau, W. Jin, and K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25-30 (2007).
[CrossRef]

Liu, K. X.

S. M. Melle, K. X. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).
[CrossRef]

Lo, Y. L.

Y. L. Lo, “In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing,” IEEE Photon. Technol. Lett. 10, 1003-1005 (1998).
[CrossRef]

Ma, C. C.

H. Y. Lin, J. H. Huang, and C. C. Ma, “Vibration analysis of piezoelectric materials by optical methods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1139-1149 (2002).
[CrossRef]

Measures, R. M.

S. M. Melle, K. X. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).
[CrossRef]

Melle, S. M.

S. M. Melle, K. X. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).
[CrossRef]

Morey, W. W.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370-1372 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236-238 (1992).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Rao, Y. J.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

Ruffin, P. B.

Shih, H. C.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Song, M. H.

Teng, C. T.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Vengsarkar, A. M.

V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648-650 (1997).
[CrossRef] [PubMed]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

Wang, J. S.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

Williams, J. A. R.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Wu, G. Y.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Wu, W. J.

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Yin, S. Z.

Zhang, L.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Appl. Opt.

Electron. Lett.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236-238 (1992).
[CrossRef]

M. A. Davis and A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength-division coupler,” Electron. Lett. 30, 75-77 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839-841 (2001).
[CrossRef]

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461-1463 (1998).
[CrossRef]

Y. L. Lo, “In-fiber Bragg grating sensors using interferometric interrogations for passive quadrature signal processing,” IEEE Photon. Technol. Lett. 10, 1003-1005 (1998).
[CrossRef]

S. M. Melle, K. X. Liu, and R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516-518 (1992).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223-1225 (1996).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

H. Y. Lin, J. H. Huang, and C. C. Ma, “Vibration analysis of piezoelectric materials by optical methods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1139-1149 (2002).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Jpn. J. Appl. Phys. Part 1

C. K. Lee, G. Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, “A high performance Doppler interferometer for advanced optical storage systems,” Jpn. J. Appl. Phys. Part 1 38, 1730-1741 (1999).
[CrossRef]

Meas. Sci. Technol.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969-1973 (1998).
[CrossRef]

Opt. Commun.

H. Y. Ling, K. T. Lau, W. Jin, and K. C. Chan, “Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating,” Opt. Commun. 270, 25-30 (2007).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup of the LPFG-based demodulation system and FBG sensors.

Fig. 2
Fig. 2

Steady-state displacement response of the MPA at 10 Hz : (a) sinusoidal waveform and (b) triangular waveform.

Fig. 3
Fig. 3

Steady-state displacement response of the MPA for the excitation of sinusoidal waveform at 1000 Hz .

Fig. 4
Fig. 4

Steady-state displacement response of the MPA for the excitation of sinusoidal waveform at 5600 Hz .

Fig. 5
Fig. 5

Transition from transient to steady-state displacement response of the MPA for the excitation of sinusoidal waveform at 70 Hz .

Fig. 6
Fig. 6

Transient out-of-plane displacement response for suddenly releasing the cantilever beam.

Fig. 7
Fig. 7

Transient out-of-plane displacement response of the cantilever beam within 50 ms of being subjected to an impact loading generated by a steel ball.

Fig. 8
Fig. 8

Transient out-of-plane displacement response of the cantilever beam within 20 ms of being subjected to an impact loading generated by a steel ball.

Fig. 9
Fig. 9

Illustration of sensor positions in a piezoceramic plate.

Fig. 10
Fig. 10

Steady-state response of the piezoceramic plate at 500 Hz measured from the FBG2 displacement sensor.

Fig. 11
Fig. 11

Steady-state response of the piezoceramic plate at 20 kHz measured from the FBG2 displacement sensor.

Fig. 12
Fig. 12

Steady-state response of the piezoceramic plate at 20 k Hz measured from the FBG3 strain sensor and strain gauge.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ B ( z , t ) = 2 n eff Λ ( z , t ) ,
Δ λ B ( z , t ) = ( 1 p e ) λ B ( z , t ) ε ( z , t ) ,
D ( t ) = 0 l 0 ε ( z , t ) d z .
F ( λ ) = | S L ( λ λ 0 ) | ,
R ( λ , t ) = R exp [ 4 ln 2 ( λ λ B ( z , t ) σ B ) 2 ] ,
P d ( t ) = k 0 I ( λ ) F ( λ ) R ( λ , t ) d λ ,

Metrics