Abstract

Polarization-resolved imaging can provide information about the composition and topography of the environment that is invisible to the eye. We demonstrate a practical method to fabricate arrays of small, orthogonal wire-grid polarizers (WGPs) that can be matched to individual detector pixels, and we present design curves that relate the structure to the polarization extinction ratio obtained. The photonic area lithographically mapped (PALM) method uses multiple-exposure conventional and holographic lithography to create subwavelength patterns easily aligned to conventional mask features. WGPs with polarization extinction ratios of ~10 at a 1.55μm wavelength were fabricated, and square centimeter areas of square micrometer size WGP arrays suitable for polarization-resolved imaging on glass were realized.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Makita, T. Yasuno, T. Endo, M. Itoh, and T. Yaragai, “Polarization contrast imaging of biological tissues by polarization sensitive Fourier domain optical coherence tomography,” Appl. Opt. 45, 1142-1147 (2006).
    [CrossRef] [PubMed]
  2. L. B. Wolff and A. G. Andreau, “Polarization camera sensors,” Image Vision Comput. 13, 497-510 (1995).
    [CrossRef]
  3. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer for polarization-difference imaging,” Appl. Opt. 41, 1291-1296 (2002).
    [CrossRef] [PubMed]
  4. J. Guo and D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39, 1486-1492 (2000).
    [CrossRef]
  5. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).
    [CrossRef]
  6. Y. Zhou, H. Tan, and D. Klotzkin, “Small area right angle bends fabricated with hybird conventional and interference lithography,” Microwave Opt. Technol. Lett. 49, 1300-1303(2007).
    [CrossRef]
  7. A. Chincholi, S. Banerjee, J.-S. Huang, and D. Klotzkin, “Parallel fabrication of photonic crystals (PC) using interference lithography for integrated waveguide-PC devices,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis, Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, 2005), paper JWB10.
  8. T. Doumuki and H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686-688 (1997).
  9. X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407-4412 (2003).
    [CrossRef]
  10. A. Taflove, Computational Elecrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).
  11. “Tables and graphs of the complex index of refraction for common microfabrication materials,” http://www.ee.byu.edu/photonics/tabulatedopticalconstants.phtml.
  12. M. Xu., H. UrbachD. deBoer, and H. Cornelissen, “Wire-grid diffraction gratings using aspolarizing beam splitter for visible light and applied in liquid crystal on Si,” Opt. Express 132303-2320 (2005).
    [CrossRef] [PubMed]
  13. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874-1877 (2005).
    [CrossRef]
  14. M. A. Jensen and G. P. Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17, 2191-2198 (2000).
    [CrossRef]
  15. P. C. Deguzman and G. P. Nordin, “Stacked subwavelength gratings as circular polarization filters,” Appl. Opt. 40, 5731-5737 (2001).
    [CrossRef]

2007 (1)

Y. Zhou, H. Tan, and D. Klotzkin, “Small area right angle bends fabricated with hybird conventional and interference lithography,” Microwave Opt. Technol. Lett. 49, 1300-1303(2007).
[CrossRef]

2006 (1)

2005 (2)

M. Xu., H. UrbachD. deBoer, and H. Cornelissen, “Wire-grid diffraction gratings using aspolarizing beam splitter for visible light and applied in liquid crystal on Si,” Opt. Express 132303-2320 (2005).
[CrossRef] [PubMed]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

2003 (1)

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (2)

1999 (1)

1997 (1)

T. Doumuki and H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686-688 (1997).

1995 (1)

L. B. Wolff and A. G. Andreau, “Polarization camera sensors,” Image Vision Comput. 13, 497-510 (1995).
[CrossRef]

Ahn, S. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Andreau, A. G.

L. B. Wolff and A. G. Andreau, “Polarization camera sensors,” Image Vision Comput. 13, 497-510 (1995).
[CrossRef]

Banerjee, S.

A. Chincholi, S. Banerjee, J.-S. Huang, and D. Klotzkin, “Parallel fabrication of photonic crystals (PC) using interference lithography for integrated waveguide-PC devices,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis, Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, 2005), paper JWB10.

Brady, D.

Chincholi, A.

A. Chincholi, S. Banerjee, J.-S. Huang, and D. Klotzkin, “Parallel fabrication of photonic crystals (PC) using interference lithography for integrated waveguide-PC devices,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis, Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, 2005), paper JWB10.

Cornelissen, H.

Craighead, H. G.

deBoer, D.

Deguzman, P. C.

Doumuki, T.

T. Doumuki and H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686-688 (1997).

Endo, T.

Guo, J.

Harnett, C. K.

Huang, J.-S.

A. Chincholi, S. Banerjee, J.-S. Huang, and D. Klotzkin, “Parallel fabrication of photonic crystals (PC) using interference lithography for integrated waveguide-PC devices,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis, Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, 2005), paper JWB10.

Itoh, M.

Jensen, M. A.

Jones, M. W.

Kim, J. S.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Kim, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Klotzkin, D.

Y. Zhou, H. Tan, and D. Klotzkin, “Small area right angle bends fabricated with hybird conventional and interference lithography,” Microwave Opt. Technol. Lett. 49, 1300-1303(2007).
[CrossRef]

A. Chincholi, S. Banerjee, J.-S. Huang, and D. Klotzkin, “Parallel fabrication of photonic crystals (PC) using interference lithography for integrated waveguide-PC devices,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis, Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, 2005), paper JWB10.

Kwok, H. S.

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

Lee, K. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Lee, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Makita, S.

Meier, J. T.

Nordin, P.

Nordin, G. P.

Park, J. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Taflove, A.

A. Taflove, Computational Elecrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).

Tamada, H.

T. Doumuki and H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686-688 (1997).

Tan, H.

Y. Zhou, H. Tan, and D. Klotzkin, “Small area right angle bends fabricated with hybird conventional and interference lithography,” Microwave Opt. Technol. Lett. 49, 1300-1303(2007).
[CrossRef]

Urbach, H.

Wolff, L. B.

L. B. Wolff and A. G. Andreau, “Polarization camera sensors,” Image Vision Comput. 13, 497-510 (1995).
[CrossRef]

Xu., M.

Yaragai, T.

Yasuno, T.

Yoon, P. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Yu, X. J.

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

Zhou, Y.

Y. Zhou, H. Tan, and D. Klotzkin, “Small area right angle bends fabricated with hybird conventional and interference lithography,” Microwave Opt. Technol. Lett. 49, 1300-1303(2007).
[CrossRef]

Appl. Opt. (4)

Image Vision Comput. (1)

L. B. Wolff and A. G. Andreau, “Polarization camera sensors,” Image Vision Comput. 13, 497-510 (1995).
[CrossRef]

J. Appl. Phys. (1)

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

J. Opt. Soc. Am. A (2)

Microwave Opt. Technol. Lett. (1)

Y. Zhou, H. Tan, and D. Klotzkin, “Small area right angle bends fabricated with hybird conventional and interference lithography,” Microwave Opt. Technol. Lett. 49, 1300-1303(2007).
[CrossRef]

Nanotechnology (1)

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874-1877 (2005).
[CrossRef]

Opt. Express (1)

Other (4)

A. Taflove, Computational Elecrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).

“Tables and graphs of the complex index of refraction for common microfabrication materials,” http://www.ee.byu.edu/photonics/tabulatedopticalconstants.phtml.

A. Chincholi, S. Banerjee, J.-S. Huang, and D. Klotzkin, “Parallel fabrication of photonic crystals (PC) using interference lithography for integrated waveguide-PC devices,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis, Topical Meetings on CD-ROM, Technical Digest (Optical Society of America, 2005), paper JWB10.

T. Doumuki and H. Tamada, “An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode,” Appl. Phys. Lett. 71, 686-688 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of array of micropolarizers and wire grid polarizer operation.

Fig. 2
Fig. 2

(a) Simulated p and (b) s polarization transmission through a WGP as a function of duty cycle for various Al wire heights (H).

Fig. 3
Fig. 3

(a) Simulated polarization extinction ratio as a function of duty cycle for various Al wire heights. (b) Polarization extinction ratio as a function of wavelength for (top curve) an optimized, anisotropically etched, 500 nm period, 100 nm thick, 0.5 duty cycle device and (bottom curve) a near-isotropic etch modeled as a trapezoidal final shape with 500 nm period, 250 nm bottom width, and 60 nm top width, as shown.

Fig. 4
Fig. 4

Overview of PALM fabrication process for array of WGPs.

Fig. 5
Fig. 5

Atomic force microscopy pictures of WGP arrays during fabrication: (a) grating in one direction, (b) gratings in both orthogonal directions, (c) magnification of gratings.

Fig. 6
Fig. 6

Experiment setup for testing broad-area polarizer, showing measured polarization extinction ratio of 10 : 1 .

Fig. 7
Fig. 7

Experiment setup for testing arrays of WGPs, along with measured transmission versus position as the fiber is scanned from pixel to pixel.

Fig. 8
Fig. 8

Experimental setup for infrared image of light transmitted through arrays of WGPs.

Fig. 9
Fig. 9

Images of transmitted pattern with respect to angles between polarization difference from incident laser source to polarizers: (a) 0°; (b) 10°; (c) 20°; (d) 30°; (e) 40°; (f) 50°; (g) 60°; (h) 70°; (i) 80°; (j) 90°.

Metrics