Abstract

Wereporterror-free underwater optical transmission measurements at 1Gbit/s (109bits/s) over a 2 m path in a laboratory water pipe with up to 36  dB of extinction. The source at 532  nm was derived from a 1064  nm continuous-wave laser diode that was intensity modulated, amplified, and frequency doubled in periodically poled lithium niobate. Measurements were made over a range of extinction by the addition of a Mg(OH)2 and Al(OH)3 suspension to the water path, and we were not able to observe any evidence of temporal pulse broadening. Results of Monte Carlo simulations over ocean water paths of several tens of meters indicate that optical communication data rates >1Gbit/s can be supported and are compatible with high-capacity data transfer applications that require no physical contact.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," Ad Hoc Networks 3, 257-279 (2005).
    [CrossRef]
  2. I. Vasilescu, K. Kotay, D. Rus, P. Corke, and M. Dunbabin, "Data collection, storage and retrieval with an underwater optical and acoustical sensor network," in Proceedings of Sensys (ACM, 2005), pp. 154-165.
  3. R. W. Embley, W. W. Chadwick, E. T. Baker, D. A. Butterfield, J. A. Resing, C. E. J. de Ronde, V. Tunnicliffe, J. E. Lupton, S. K. Juniper, K. H. Rubin, R. J. Stern, G. T. Lebon, K. Nakamura, S. G. Merle, J. R. Hein, D. A. Wiens, and Y. Tamura, "Long-term eruptive activity at a submarine arc volcano," Nature 441, 494-497 (2006).
    [CrossRef] [PubMed]
  4. R. Urick, Principles of Underwater Sound for Engineers, 3rd ed. (Peninsula, 1996).
  5. N. G. Jerlov, Marine Optics, Vol. 14 of Elsevier Oceanographic (Elsevier, 1976).
  6. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  7. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, in Optical Channels: Fibers, Clouds, Water, and the Atmosphere (Plenum, 1988), Chaps. 6 and 7.
  8. J. W. Giles and I. N. Bankman, "Underwater optical communications systems. Part 2: basic design considerations," in Proceedings of MILCOM 2005, IEEE Military Communications Conference (IEEE, 2005), pp. 1700-1705.
  9. B. Cochenour, L. Mullen, A. Laux, and T. Curran, "Effects of multiple scattering on the implementation of an underwater wireless optical communications link," in Proceedings of IEEE Oceans 2006 (IEEE, 2006), p. 6.
    [CrossRef]
  10. N. Farr, A. Chave, L. Freitag, J. Preisig, S. White, D. Yoerger, and P. Titterton, "Optical modem technology for seafloor observatories," in Proceedings of IEEE Oceans 2005 (IEEE, 2005), pp. 928-934.
  11. J. B. Snow, J. P. Flatley, D. E. Freeman, M. A. Landry, C. E. Lindstrom, J. R. Longacre, and J. A. Schwartz, "Underwater propagation of high data rate laser communications pulses," Proc. SPIE 1750, 419-427 (1992).
    [CrossRef]
  12. N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, "Optical modem technology for seafloor observatories," in Proceedings of IEEE Oceans 2006 (IEEE, 2006), pp. 1-6.
    [CrossRef]
  13. R. E. Walker, Marine Light Field Statistics (Wiley, 1994), Eq. 2-2.6.
  14. C. M. Blanca and C. Saloma, "Efficient analysis of temporal broadening of a pulsed focused Gaussian beam in scattering media," Appl. Opt. 38, 5433-5437 (1999).
    [CrossRef]
  15. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]
  16. A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, "The abc's of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment," J. Mod. Opt. 49, 439-451 (2002).
    [CrossRef]
  17. T. J. Petzold, "Volume scattering functions for selected ocean waters" (Scripps Institute of Oceanography, 1972), Paper SIO Reference 72-78.

2006 (1)

R. W. Embley, W. W. Chadwick, E. T. Baker, D. A. Butterfield, J. A. Resing, C. E. J. de Ronde, V. Tunnicliffe, J. E. Lupton, S. K. Juniper, K. H. Rubin, R. J. Stern, G. T. Lebon, K. Nakamura, S. G. Merle, J. R. Hein, D. A. Wiens, and Y. Tamura, "Long-term eruptive activity at a submarine arc volcano," Nature 441, 494-497 (2006).
[CrossRef] [PubMed]

2005 (1)

I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," Ad Hoc Networks 3, 257-279 (2005).
[CrossRef]

2002 (1)

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, "The abc's of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment," J. Mod. Opt. 49, 439-451 (2002).
[CrossRef]

1999 (1)

1992 (1)

J. B. Snow, J. P. Flatley, D. E. Freeman, M. A. Landry, C. E. Lindstrom, J. R. Longacre, and J. A. Schwartz, "Underwater propagation of high data rate laser communications pulses," Proc. SPIE 1750, 419-427 (1992).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Ad Hoc Networks (1)

I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," Ad Hoc Networks 3, 257-279 (2005).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

J. Mod. Opt. (1)

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, "The abc's of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment," J. Mod. Opt. 49, 439-451 (2002).
[CrossRef]

Nature (1)

R. W. Embley, W. W. Chadwick, E. T. Baker, D. A. Butterfield, J. A. Resing, C. E. J. de Ronde, V. Tunnicliffe, J. E. Lupton, S. K. Juniper, K. H. Rubin, R. J. Stern, G. T. Lebon, K. Nakamura, S. G. Merle, J. R. Hein, D. A. Wiens, and Y. Tamura, "Long-term eruptive activity at a submarine arc volcano," Nature 441, 494-497 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. B. Snow, J. P. Flatley, D. E. Freeman, M. A. Landry, C. E. Lindstrom, J. R. Longacre, and J. A. Schwartz, "Underwater propagation of high data rate laser communications pulses," Proc. SPIE 1750, 419-427 (1992).
[CrossRef]

Other (11)

N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, "Optical modem technology for seafloor observatories," in Proceedings of IEEE Oceans 2006 (IEEE, 2006), pp. 1-6.
[CrossRef]

R. E. Walker, Marine Light Field Statistics (Wiley, 1994), Eq. 2-2.6.

I. Vasilescu, K. Kotay, D. Rus, P. Corke, and M. Dunbabin, "Data collection, storage and retrieval with an underwater optical and acoustical sensor network," in Proceedings of Sensys (ACM, 2005), pp. 154-165.

T. J. Petzold, "Volume scattering functions for selected ocean waters" (Scripps Institute of Oceanography, 1972), Paper SIO Reference 72-78.

R. Urick, Principles of Underwater Sound for Engineers, 3rd ed. (Peninsula, 1996).

N. G. Jerlov, Marine Optics, Vol. 14 of Elsevier Oceanographic (Elsevier, 1976).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, in Optical Channels: Fibers, Clouds, Water, and the Atmosphere (Plenum, 1988), Chaps. 6 and 7.

J. W. Giles and I. N. Bankman, "Underwater optical communications systems. Part 2: basic design considerations," in Proceedings of MILCOM 2005, IEEE Military Communications Conference (IEEE, 2005), pp. 1700-1705.

B. Cochenour, L. Mullen, A. Laux, and T. Curran, "Effects of multiple scattering on the implementation of an underwater wireless optical communications link," in Proceedings of IEEE Oceans 2006 (IEEE, 2006), p. 6.
[CrossRef]

N. Farr, A. Chave, L. Freitag, J. Preisig, S. White, D. Yoerger, and P. Titterton, "Optical modem technology for seafloor observatories," in Proceedings of IEEE Oceans 2005 (IEEE, 2005), pp. 928-934.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental layout for optical propagation through the 2 m water pipe. Pol is polarization control, EO mod is a lithium niobate waveguide amplitude modulator, YDFA is a ytterbium-doped fiber amplifier, λ / 2 is a half-wave plate, and PD are photodiode detectors.

Fig. 2
Fig. 2

Volume scattering functions from [17] for three types of ocean water (dashed curves, from top): harbor water, coastal ocean, and clear ocean, and Maalox (solid curve). The Maalox data have been scaled by 0.399 to give the same integrated scattering coefficient, b = 0.220 m 1 , as the coastal ocean water.

Fig. 3
Fig. 3

Representative eye diagrams for the 1 Gbit∕s and 25% density waveform transmitted through the water pipe with average power of (a) 0.045   mW and (b) 7.3   mW , and water path extinction of 7 and 3 6   dΒ , respectively.

Fig. 4
Fig. 4

Transmission calculated from Monte Carlo simulations for a 2 m path with different scaling of the Maalox absorption and volume scattering. Results are given for the experimental pipe geometry with perfectly absorbing cylindrical walls (solid curve) and with no walls (dashed curve). Calculated transmission for 16 × scaling with absorbing walls and with a reduced 0.1   rad half-angle field of view (dashed long–short) give better agreement with the experimental data (circles).

Fig. 5
Fig. 5

Impulse response functions calculated from Monte Carlo simulations for a 2 m path with 16 × scaled Maalox absorption and volume scattering. The ballistic component has been removed and the collection aperture diameter is 20   mm . The results (solid curve) with 5   mrad half-angle field of view and absorbing walls are meant to match experimental conditions with the strongest scattering. Results with a full π / 2 half-angle field of view are shown with absorbing walls (long dash) and no walls (short dash).

Fig. 6
Fig. 6

Calculated frequency response in three different ocean waters at selected ranges for a source beam with uniform radiance over a 0.1   rad half-angle using absorption and scattering functions from [17]. The receiver is on axis and has a field-of-view half-angle of 0.1 (solid curve) and π / 2 (dashed curve).

Tables (1)

Tables Icon

Table 1 Optical Properties for Three Ocean Water Types and Maalox from [17]

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

b = 2 π 0 π sin ( θ ) β ( θ ) d θ .
1 v t L ( r , s , t ) + s · L ( r , s , t ) = ρ σ L ( r , s , t ) + 4 π β ( θ ) L ( r , s , t ) d s .
x = 2 π b 0 θ β ( θ ) sin ( θ ) d θ .
t c n c [ ( z 2 + 4 r 2 ) 1 / 2 z ] 0.011   ns ,
L B ( θ = 0 , s , t ) = 0 π p ( θ ) L 0 ( θ , s , t ) sin ( θ ) d θ / 0 π p ( θ ) sin ( θ ) d θ .
u B ( θ = 0 , t ) = FOV L B ( θ = 0 , s , t ) d s .

Metrics