Abstract

Investigations of polymerization rates in an acrylamide-based photopolymer are presented. The polymerization rate for acrylamide and methylenebisacrylamide was determined by monitoring the changes in the characteristic vibrational peaks at 1284 and 1607cm1 corresponding to the bending mode of the CH bond and CC double bonds of acrylamide and in the characteristic peak at 1629cm1 corresponding to the carbon–carbon double bond of methylenebisacrylamide using Raman spectroscopy. To study the dependence of the polymerization rate on intensity and to find the dependence parameter, the polymerization rate constant is measured at different intensities. A comparison with a commercially available photopolymer shows that the polymerization rate in this photopolymer is much faster.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Guntaka, V. Toal, and S. Martin, "Holographically recorded diffractive optical elements for holographic and electronic speckle pattern interferometry," Appl. Opt. 41, 7475-7479 (2002).
    [CrossRef] [PubMed]
  2. R. T. Ingwall, D. A. Waldman, H. J. Caufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, 2000), pp. 171-197.
  3. H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, "Characterisation of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A: Pure Appl. Opt. 7, 255-260 (2005).
    [CrossRef]
  4. R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, "Acrylamide based photopolymer for micro-holographic data storage," Opt. Mater. 28, 329-333 (2006).
    [CrossRef]
  5. K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, "Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer," Opt. Commun. 273, 367-369 (2007).
    [CrossRef]
  6. E. Mihaylova, I. Naydenova, S. Martin, and V. Toal, "Electronic speckle pattern shearing interferometer with a photopolymer holographic grating," Appl. Opt. 43, 2439-2442 (2004).
    [CrossRef] [PubMed]
  7. S. R. Guntaka, V. Toal, and S. Martin, "Holographic and electronic speckle-pattern interferometry using a photopolymer recording material," Strain 40, 79-82 (2004).
    [CrossRef]
  8. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, "Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system," Appl. Opt. 43, 2900-2905 (2004).
    [CrossRef] [PubMed]
  9. I. Aubrecht, M. Miler, and I. Koudela, "Recording of holographic diffraction gratings in photopolymers: theoretical modeling and real-time monitoring of grating growth," J. Mod. Opt. 45, 1465-1477 (1998).
    [CrossRef]
  10. W. S. Colburn and K. A. Haines, "Volume hologram formation in photopolymer materials," Appl. Opt. 10, 1636-1641 (1971).
    [CrossRef] [PubMed]
  11. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Shilling, "Quantitative model of volume hologram formation in photopolymers," J. Appl. Phys. 81, 5913-5923 (1997).
    [CrossRef]
  12. J. H. Kwon, H. C. Hwang, and K. C. Woo, "Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers," J. Opt. Soc. Am. B 16, 1651-1657 (1999).
    [CrossRef]
  13. V. Moreau, Y. Renotte, and Y. Lion, "Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model," Appl. Opt. 41, 3427-3435 (2002).
    [CrossRef] [PubMed]
  14. G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
    [CrossRef]
  15. C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, "Characterization of a PVA/acrylamide photopolymer: influence of a cross-linking monomer in the final characteristics of the hologram," Opt. Commun. 224, 27-34 (2003).
    [CrossRef]
  16. S. Piazzolla and B. K. Jenkins, "First-harmonic diffusion model for holographic grating formation in photopolymers," J. Opt. Soc. Am. B 17, 1147-1157 (2000).
    [CrossRef]
  17. A. I. Jirasek, C. Duzenli, C. Audet, and J. Eldridge, "Characterization of monomer/crosslinker consumption and polymer formation observed in FT-Raman spectra of irradiated polyacrylamide gels," Phys. Med. Biol. 46, 151-165 (2001).
    [CrossRef] [PubMed]
  18. C. Baldock, L. Rintoul, S. F. Keevil, J. M. Pope, and G. A. George, "Fourier transform Raman spectroscopy of acrylamide gels (PAGs) for radiation dosimetry," Phys. Med. Biol. 43, 3617-3627 (1998).
    [CrossRef] [PubMed]

2007 (1)

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, "Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer," Opt. Commun. 273, 367-369 (2007).
[CrossRef]

2006 (1)

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, "Acrylamide based photopolymer for micro-holographic data storage," Opt. Mater. 28, 329-333 (2006).
[CrossRef]

2005 (1)

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, "Characterisation of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A: Pure Appl. Opt. 7, 255-260 (2005).
[CrossRef]

2004 (3)

2003 (1)

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, "Characterization of a PVA/acrylamide photopolymer: influence of a cross-linking monomer in the final characteristics of the hologram," Opt. Commun. 224, 27-34 (2003).
[CrossRef]

2002 (2)

2001 (1)

A. I. Jirasek, C. Duzenli, C. Audet, and J. Eldridge, "Characterization of monomer/crosslinker consumption and polymer formation observed in FT-Raman spectra of irradiated polyacrylamide gels," Phys. Med. Biol. 46, 151-165 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1998 (2)

C. Baldock, L. Rintoul, S. F. Keevil, J. M. Pope, and G. A. George, "Fourier transform Raman spectroscopy of acrylamide gels (PAGs) for radiation dosimetry," Phys. Med. Biol. 43, 3617-3627 (1998).
[CrossRef] [PubMed]

I. Aubrecht, M. Miler, and I. Koudela, "Recording of holographic diffraction gratings in photopolymers: theoretical modeling and real-time monitoring of grating growth," J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

1997 (1)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Shilling, "Quantitative model of volume hologram formation in photopolymers," J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

1994 (1)

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

1971 (1)

Appl. Opt. (5)

J. Appl. Phys. (1)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Shilling, "Quantitative model of volume hologram formation in photopolymers," J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

J. Mod. Opt. (2)

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

I. Aubrecht, M. Miler, and I. Koudela, "Recording of holographic diffraction gratings in photopolymers: theoretical modeling and real-time monitoring of grating growth," J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, "Characterisation of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A: Pure Appl. Opt. 7, 255-260 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, "Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer," Opt. Commun. 273, 367-369 (2007).
[CrossRef]

C. Neipp, S. Gallego, M. Ortuno, A. Marquez, A. Belendez, and I. Pascual, "Characterization of a PVA/acrylamide photopolymer: influence of a cross-linking monomer in the final characteristics of the hologram," Opt. Commun. 224, 27-34 (2003).
[CrossRef]

Opt. Mater. (1)

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, "Acrylamide based photopolymer for micro-holographic data storage," Opt. Mater. 28, 329-333 (2006).
[CrossRef]

Phys. Med. Biol. (2)

A. I. Jirasek, C. Duzenli, C. Audet, and J. Eldridge, "Characterization of monomer/crosslinker consumption and polymer formation observed in FT-Raman spectra of irradiated polyacrylamide gels," Phys. Med. Biol. 46, 151-165 (2001).
[CrossRef] [PubMed]

C. Baldock, L. Rintoul, S. F. Keevil, J. M. Pope, and G. A. George, "Fourier transform Raman spectroscopy of acrylamide gels (PAGs) for radiation dosimetry," Phys. Med. Biol. 43, 3617-3627 (1998).
[CrossRef] [PubMed]

Strain (1)

S. R. Guntaka, V. Toal, and S. Martin, "Holographic and electronic speckle-pattern interferometry using a photopolymer recording material," Strain 40, 79-82 (2004).
[CrossRef]

Other (1)

R. T. Ingwall, D. A. Waldman, H. J. Caufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, 2000), pp. 171-197.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Experimental setup of the Raman spectrometer and irradiation setup.

Fig. 2
Fig. 2

Raman spectrum and the characteristic peaks of (a) acrylamide, (b) NN′methylenebisacrylamide, (c) triethanolamine, (d) erythrosine B, and (e) polyvinyl alcohol.

Fig. 3
Fig. 3

Raman spectrum and the characteristic peaks of the photopolymer layer containing (a) acrylamide only as a monomer and (b) both acrylamide and NN′methylene bisacrylamide as the monomers.

Fig. 4
Fig. 4

(a) Raman spectra of the photopolymer containing monomer and cross-linking monomer exposed to a constant intensity of 10 mW / cm 2 for 1 s each time before the spectrum is measured. The peaks correspond to 1607 and 1629 cm 1 or acrylamide and bisacrylamide C═C bonds, respectively. (b) Raman spectra of the photopolymer containing monomer and a cross linker exposed to a constant intensity of 10 mW / cm 2 for 1 s each time before the spectrum is measured. The peak corresponds to 1284 cm 1 , the CH vinyl bond of acrylamide.

Fig. 5
Fig. 5

(Color online) Graphs of peak intensity versus illumination time corresponding to (a) CH vinyl bond of acrylamide at 1284 cm 1 , (b) carbon–carbon double bond of acrylamide at 1607 cm 1 , and (c) carbon–carbon double bond of NN′methylenebisacrylamide at 1629 cm 1 . The solid curve is a monoexponential fitting curve, and the scattered points correspond to the data points (peak intensity). The photopolymer layer was exposed to a uniform exposure intensity of 10 mW / cm 2 .

Fig. 6
Fig. 6

(Color online) Graph of log ( t ) against log ( I exp ) corresponding to (a) the bending mode of the CH vinyl bond of acrylamide at 1284 cm 1 , (b) the carbon–carbon double bond of acrylamide, and (c) the carbon–carbon double bond of NN′methylenebisacrylamide. The solid curve corresponds to a linear fit of the scattered data points. t is the polymerization time constant obtained at different exposure intensities.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 t = k I 1 / 2 ,
1 t = k I γ ,

Metrics