Abstract

An experimental instrument for measuring a laser-induced fluorescence spectrum from a single aerosol particle is described. As a demonstration of instrument capabilities, the results of monodisperse 4.7μm sodium chloride particles doped with fluorescent riboflavin, produced with an inkjet aerosol generator, are presented. The fluorescence of the aerosol particles is excited in the wide range from 210 to 419  nm using a pulsed, tunable optical parametric oscillator laser. The maximum of the fluorescence emission of separately measured particles is detected at 560  nm. The dependence of the fluorescence on the excitation wavelength is studied and fluorescence cross sections are estimated. Agreement between the measured fluorescence data and the literature data for riboflavin is observed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Ho, M. Spence, and P. Hairston, "Measurement of biological aerosol with a fluorescent aerodynamic particle sizer (FLAPS): correlation of optical data with biological data," Aerobiologia 15, 281-291 (1999).
    [Crossref]
  2. Y.-L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, "Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser," Opt. Lett. 24, 116-118 (1999).
    [Crossref]
  3. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, "Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation," Opt. Lett. 21, 1307-1309 (1996).
    [Crossref] [PubMed]
  4. S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, and G. L. Fernandez, "Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles," Appl. Opt. 34, 7149-7155 (1995).
    [Crossref] [PubMed]
  5. P. Jonsson, F. Kullander, P. Wästerby, M. Tiihonen, and M. Lindgren, "Detection of fluorescence spectra of individual bioaerosol particles," Proc. SPIE 5990, 59900M (2005).
    [Crossref]
  6. P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, and G. L. Fernandez, "Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles," Appl. Opt. 35, 1069-1076 (1996).
    [Crossref] [PubMed]
  7. Y.-L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, "Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles," Appl. Phys. B 72, 449-454 (2001).
  8. Y.-L. Pan, V. Boutou, and R. K. Chang, "Application of light-emitting diodes for aerosol fluorescence detection," Opt. Lett. 28, 1707-1709 (2003).
    [Crossref] [PubMed]
  9. Y.-L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, "Single-particle fluorescence spectrometer for ambient aerosols," Aerosol Sci. Technol. 37, 627-638 (2003).
  10. R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, "Real-time measurement of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
    [Crossref]
  11. M. A. Stowers, A. L. van Wuijckhuijse, J. C. M. Marijnissen, C. E. Kientz, and T. Ciach, "Fluorescence preselection of bioaerosol for single-particle mass spectrometry," Appl. Opt. 45, 8531-8536 (2006).
    [Crossref] [PubMed]
  12. B. V. Bronk and L. Reinisch, "Variability of steady-state bacterial fluorescence with respect to growth conditions," Appl. Spectrosc. 47, 436-440 (1993).
    [Crossref]
  13. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, "Resolved absolute fluorescence cross sections for bacillus spores," Appl. Opt. 36, 958-967 (1997).
    [Crossref] [PubMed]
  14. V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, "Multiple UV wavelength excitation and fluorescence of bioaerosols," Opt. Express 12, 4457-4466 (2004).
    [Crossref] [PubMed]
  15. R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, "Determination of fluorescence cross-sections of biological aerosols," Part. Part. Syst. Charact. 19, 216-222 (2002).
    [Crossref]
  16. Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernan, S. A. Young, and R. J. Radloff, "Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy," Aerosol Sci. Technol. 30, 186-201 (1999).
    [Crossref]
  17. J. Kunnil, B. Swartz, and L. Reinisch, "Changes in the luminescence between dried and wet bacillus spores," Appl. Opt. 443, 5404-5409 (2004).
    [Crossref]
  18. J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, "An ink jet aerosol generator," J. Aerosol Sci. Vol. , Suppl. I 29, S965-S966 (1998).
    [Crossref]
  19. L. S. Dietrich and B. F. Harland, "Evidence indicating a chemical reaction between hydroxylamine and riboflavin," J. Biol. Chem. 217, 383-390 (1956).
  20. O. Svelto, Principle of Lasers, 4th ed. (Springer, 1998), Chap. 2.
  21. P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, "Development of fluorescence-based point detector for biological sensing," Proc. SPIE 5617, 60-74 (2004).
    [Crossref]
  22. S. C. Hill, R. G. Pinnick, S. Niles, J. N. F. Fell, Y.-L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, "Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity," Appl. Opt. 40, 3005-3013 (2001).
    [Crossref]

2006 (1)

2005 (1)

P. Jonsson, F. Kullander, P. Wästerby, M. Tiihonen, and M. Lindgren, "Detection of fluorescence spectra of individual bioaerosol particles," Proc. SPIE 5990, 59900M (2005).
[Crossref]

2004 (3)

V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, "Multiple UV wavelength excitation and fluorescence of bioaerosols," Opt. Express 12, 4457-4466 (2004).
[Crossref] [PubMed]

J. Kunnil, B. Swartz, and L. Reinisch, "Changes in the luminescence between dried and wet bacillus spores," Appl. Opt. 443, 5404-5409 (2004).
[Crossref]

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, "Development of fluorescence-based point detector for biological sensing," Proc. SPIE 5617, 60-74 (2004).
[Crossref]

2003 (2)

Y.-L. Pan, V. Boutou, and R. K. Chang, "Application of light-emitting diodes for aerosol fluorescence detection," Opt. Lett. 28, 1707-1709 (2003).
[Crossref] [PubMed]

Y.-L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, "Single-particle fluorescence spectrometer for ambient aerosols," Aerosol Sci. Technol. 37, 627-638 (2003).

2002 (1)

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, "Determination of fluorescence cross-sections of biological aerosols," Part. Part. Syst. Charact. 19, 216-222 (2002).
[Crossref]

2001 (2)

Y.-L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, "Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles," Appl. Phys. B 72, 449-454 (2001).

S. C. Hill, R. G. Pinnick, S. Niles, J. N. F. Fell, Y.-L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, "Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity," Appl. Opt. 40, 3005-3013 (2001).
[Crossref]

1999 (4)

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernan, S. A. Young, and R. J. Radloff, "Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy," Aerosol Sci. Technol. 30, 186-201 (1999).
[Crossref]

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, "Real-time measurement of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[Crossref]

J. Ho, M. Spence, and P. Hairston, "Measurement of biological aerosol with a fluorescent aerodynamic particle sizer (FLAPS): correlation of optical data with biological data," Aerobiologia 15, 281-291 (1999).
[Crossref]

Y.-L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, "Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser," Opt. Lett. 24, 116-118 (1999).
[Crossref]

1998 (1)

J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, "An ink jet aerosol generator," J. Aerosol Sci. Vol. , Suppl. I 29, S965-S966 (1998).
[Crossref]

1997 (1)

1996 (2)

1995 (1)

1993 (1)

1956 (1)

L. S. Dietrich and B. F. Harland, "Evidence indicating a chemical reaction between hydroxylamine and riboflavin," J. Biol. Chem. 217, 383-390 (1956).

Aerobiologia (1)

J. Ho, M. Spence, and P. Hairston, "Measurement of biological aerosol with a fluorescent aerodynamic particle sizer (FLAPS): correlation of optical data with biological data," Aerobiologia 15, 281-291 (1999).
[Crossref]

Aerosol Sci. Technol. (2)

Y.-L. Pan, J. Hartings, R. G. Pinnick, S. C. Hill, J. Halverson, and R. K. Chang, "Single-particle fluorescence spectrometer for ambient aerosols," Aerosol Sci. Technol. 37, 627-638 (2003).

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, J. P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernan, S. A. Young, and R. J. Radloff, "Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy," Aerosol Sci. Technol. 30, 186-201 (1999).
[Crossref]

Appl. Opt. (6)

Appl. Phys. B (1)

Y.-L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J.-P. Wolf, and R. K. Chang, "Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles," Appl. Phys. B 72, 449-454 (2001).

Appl. Spectrosc. (1)

Field Anal. Chem. Technol. (1)

R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, "Real-time measurement of fluorescence spectra from single airborne biological particles," Field Anal. Chem. Technol. 3, 221-239 (1999).
[Crossref]

J. Aerosol Sci. Vol. (1)

J. Bottiger, P. Deluca, E. Stuebing, and D. Vanreenen, "An ink jet aerosol generator," J. Aerosol Sci. Vol. , Suppl. I 29, S965-S966 (1998).
[Crossref]

J. Biol. Chem. (1)

L. S. Dietrich and B. F. Harland, "Evidence indicating a chemical reaction between hydroxylamine and riboflavin," J. Biol. Chem. 217, 383-390 (1956).

Opt. Express (1)

Opt. Lett. (3)

Part. Part. Syst. Charact. (1)

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, "Determination of fluorescence cross-sections of biological aerosols," Part. Part. Syst. Charact. 19, 216-222 (2002).
[Crossref]

Proc. SPIE (2)

P. Jonsson, F. Kullander, P. Wästerby, M. Tiihonen, and M. Lindgren, "Detection of fluorescence spectra of individual bioaerosol particles," Proc. SPIE 5990, 59900M (2005).
[Crossref]

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. Lindgren, "Development of fluorescence-based point detector for biological sensing," Proc. SPIE 5617, 60-74 (2004).
[Crossref]

Other (1)

O. Svelto, Principle of Lasers, 4th ed. (Springer, 1998), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup: OPO, tunable solid-state laser; M, mirror; P, Pellin–Broca prism; AT, attenuator; A, aperture; W, window; CAM, CCD camera; EM, energymeter; TU, trigger unit; IJAG, inkjet aerosol generator; C, aerosol concentrator; APS, aerodynamic particle sizer; OAC, optical aerosol chamber; SG, spectrograph; ICCD, image-intensified CCD camera; DAQ&PC, data acquisition board and personal computer.

Fig. 2
Fig. 2

Optical aerosol chamber. Single aerosol particles are detected by monitoring the scattered light from a 650   nm cw diode laser light just below the entrance nozzle. The scatter signal is used to trigger the OPO laser. The fluorescence is excited at the focal point of the chamber. The fluorescence light is collected using wide-angle optics and spectrally dispersed using the spectrograph.

Fig. 3
Fig. 3

Timing diagram of a successful triggering. Particle detected when 650   nm scatter exceeds threshold. Pulse laser is triggered, trigger laser is turned off, and excitation pulse is emitted after t trig = 209 μ s .

Fig. 4
Fig. 4

Fluorescence saturation as the UV pulse energy is increased. Data points represent measured values corresponding to 263, 295, and 340   nm , respectively. Solid curves are theoretical fits to the corresponding measured data.

Fig. 5
Fig. 5

Spectral transfer function of the setup. The long-pass filter with a 450   nm cutoff limits the transmission at short wavelengths, whereas the response at long wavelengths is mainly limited by the spectral response of the ICCD camera.

Fig. 6
Fig. 6

Uncorrected fluorescence spectrum from an individual 4.7 μ m diameter riboflavin-doped NaCl particle (gray curve) and an average spectrum of 300 seprately measured particles (black curve). The excitation wavelength was 340   nm .

Fig. 7
Fig. 7

Fluorescence cross sections of 4.7 μ m riboflavin-doped NaCl particles containing 3.6 × 10 12 g / particle of riboflavin. Dotted and dashed vertical lines correspond to thereported local minima and maxima of the absorption spectrum, respectively [19].

Fig. 8
Fig. 8

Spectral fluorescence cross-section map of 4.7 μ m riboflavin-doped NaCl particles spectrally divided on emission wavelengths. The shape of the fluorescence emission spectra of the riboflavin-doped particles remains the same for different excitation wavelengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S fl N t 1 + E sat / E ,
σ fl E fl E π a b ,

Metrics