Abstract

We compare the geometric and physical-optics performance of two configurations of offset dual-reflector antennas that obey the Mizuguchi–Dragone condition. The traditional Gregorian configuration is compared with the larger crossed configuration. These configurations are candidates for experiments that measure the polarization of the cosmic microwave background. Particular attention is given to wide-field performance and polarization fidelity. Both a ray tracer and a physical optics simulation package are used to conclude that the crossed configuration has a larger diffraction-limited field of view, but within this limit both configurations have roughly the same instrumental polarization and both show excellent cross-polarization levels, with the crossed configuration showing 10  dB better performance.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Hanany and D. P. Marrone, "Comparison of designs of off-axis Gregorian telescopes for millimeter-wave large focal-plane arrays," Appl. Opt. 41, 4666-4670 (2002).
    [CrossRef] [PubMed]
  2. S. Dicker and M. Devlin, "Millimeter wave reimaging optics for the 100 m Green Bank telescope," Appl. Opt. 44, 5855-5858 (2005).
    [CrossRef] [PubMed]
  3. W. Rusch, A. J. Prata, Y. Rahmat-Samii, and R. Shore, "Derivation and application of the equivalent paraboloid for classical offset Cassegrain and Gregorian antennas," IEEE Trans. Antennas Propag. 38, 1141-1149 (1990).
    [CrossRef]
  4. C. Dragone, "Offset multireflector antennas with perfect pattern symmetry and polarization discrimination," AT&T Tech. J. 57, 2663-2684 (1978).
  5. Y. Mizugutch, A. M., and H. Yokoi, "Offset dual reflector antenna," in Antennas and Propagation Society International Symposium (IEEE, 1976), Vol. 14, pp. 2-5.
  6. L. B. Newburgh, Berkeley Collaboration, University of California, Caltech Collaboration, Columbia University Collaboration, GSFC Collaboration, Harvard-Smithsonian CfA Collaboration, JPL Collaboration, University of Chicago Collaboration, Kavli Institute, Stanford University Collaboration, Kavli Institute, University of Miami Collaboration, University of Oxford Collaboration, and Princeton University Collaboration, "QUIET: Q U imaging experiment for detection of the CMBR polarization," Bull. Am. Astron. Soc. 37, 1429 (2005).
  7. A. C. Taylor, A. Challinor, D. Goldie, K. Grainge, M. E. Jones, A. N. Lasenby, S. Withington, G. Yassin, W. K. Gear, L. Piccirillo, P. Ade, P. D. Mauskopf, B. Maffei, and G. Pisano, "CLOVER--a new instrument for measuring the b-mode polarization of the CMB," arXiv.org e-Print archive, astro-ph/0407148, submitted 7 July 2004, http://arxiv.org/abs/astro-ph/0407148.
  8. P. Oxley, P. A. Ade, C. Baccigalupi, P. de Bernardis, H.-M. Cho, M. J. Devlin, S. Hanany, B. R. Johnson, T. Jones, A. T. Lee, T. Matsumura, A. D. Miller, M. Milligan, T. Renbarger, H. G. Spieler, R. Stompor, G. S. Tucker, and M. Zaldarriaga, "The EBEX experiment," in Infrared Spaceborne Remote Sensing XII, M. Strojnik, ed., Proc. SPIE 5543, 320-331 (2004).
  9. P. Collaboration, http://bolo.berkeley.edu/polarbear.
  10. Q. Collaboration, http://quiet.uchicago.edu/.
  11. E. Serabyn, "Wide-field imaging optics for submm arrays," in ASP Conference Series 75: Multi-Feed Systems for Radio Telescopes, Astronomical Society of the Pacific Conference Series, D. T. Emerson and J. M. Payne, eds. (Astronomical Society of the Pacific, 1995), Vol. 75, pp. 74-81.
  12. ZEMAX Development Corporation, "Zemax: software for optical system design," http://www.zemax.com/.
  13. C. Granet, "Designing classical dragonian offset dual-reflector antennas from combinations of prescribed geometric parameters," IEEE Antennas Propag. Mag. 43, 1045-9243 (2001).
    [CrossRef]
  14. TICRA, "Grasp9:electromagnetic analysis of reflector antenna and scatterers," http://www.ticra.dk.
  15. A. D. Olver, P. J. B. Clarricoats, A. A. Kishk, and L. Shafai, Microwave Horns and Feeds (IEEE, 1994).
    [CrossRef]
  16. C. Granet and G. L. James, "Design of currugated horns: a primer," IEEE Antennas Propag. Mag. 47, 76-84 (2005).
    [CrossRef]
  17. M. L. Sharp, Behavior and Design of Aluminum Structures (McGraw-Hill, 1993).
  18. W. Hu, M. M. Hedman, and M. Zaldarriaga, "Benchmark parameters for CMB polarization experiments," Phys. Rev. D 67, 043004 (2003).
    [CrossRef]
  19. D. O'Dea, A. Challinor, and B. R. Johnson, "Systematic errors in cosmic microwave background polarization measurements," Mon. Not. R. Astron. Soc. 376, 1767-1783 (2007).
    [CrossRef]
  20. J. Ruze, "Antenna tolerance theory: a review," Proc. IEEE 54, 633-640 (1966).
    [CrossRef]
  21. A. Benoît, P. Ade, A. Amblard, R. Ansari, E. Aubourg, J. Bartlett, J.-P. Bernard, R. S. Bhatia, A. Blanchard, J. J. Bock, A. Boscaleri, F. R. Bouchet, A. Bourrachot, P. Camus, F. Couchot, P. de Bernardis, J. Delabrouille, F.-X. Désert, O. Doré, M. Douspis, L. Dumoulin, X. Dupac, P. Filliatre, K. Ganga, F. Gannaway, B. Gautier, M. Giard, Y. Giraud-Héraud, R. Gispert, L. Guglielmi, J.-C. Hamilton, S. Hanany, S. Henrot-Versillé, V. V. Hristov, J. Kaplan, G. Lagache, J.-M. Lamarre, A. E. Lange, K. Madet, B. Maffei, D. Marrone, S. Masi, J. A. Murphy, F. Naraghi, F. Nati, G. Perrin, M. Piat, J.-L. Puget, D. Santos, R. V. Sudiwala, J.-C. Vanel, D. Vibert, E. Wakui, and D. Yvon, "Archeops: a high resolution, large sky coverage balloon experiment for mapping cosmic microwave background anisotropies," Astropart. Phys. 17, 101-124 (2002).
    [CrossRef]
  22. L. Page, C. Jackson, C. Barnes, C. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, D. N. Spergel, G. S. Tucker, D. T. Wilkinson, E. Wollack, and E. L. Wright, "The optical design and characterization of the microwave anisotropy probe," Astrophys. J. 585, 566-586 (2003).
    [CrossRef]

2007 (1)

D. O'Dea, A. Challinor, and B. R. Johnson, "Systematic errors in cosmic microwave background polarization measurements," Mon. Not. R. Astron. Soc. 376, 1767-1783 (2007).
[CrossRef]

2005 (3)

C. Granet and G. L. James, "Design of currugated horns: a primer," IEEE Antennas Propag. Mag. 47, 76-84 (2005).
[CrossRef]

L. B. Newburgh, Berkeley Collaboration, University of California, Caltech Collaboration, Columbia University Collaboration, GSFC Collaboration, Harvard-Smithsonian CfA Collaboration, JPL Collaboration, University of Chicago Collaboration, Kavli Institute, Stanford University Collaboration, Kavli Institute, University of Miami Collaboration, University of Oxford Collaboration, and Princeton University Collaboration, "QUIET: Q U imaging experiment for detection of the CMBR polarization," Bull. Am. Astron. Soc. 37, 1429 (2005).

S. Dicker and M. Devlin, "Millimeter wave reimaging optics for the 100 m Green Bank telescope," Appl. Opt. 44, 5855-5858 (2005).
[CrossRef] [PubMed]

2004 (1)

P. Oxley, P. A. Ade, C. Baccigalupi, P. de Bernardis, H.-M. Cho, M. J. Devlin, S. Hanany, B. R. Johnson, T. Jones, A. T. Lee, T. Matsumura, A. D. Miller, M. Milligan, T. Renbarger, H. G. Spieler, R. Stompor, G. S. Tucker, and M. Zaldarriaga, "The EBEX experiment," in Infrared Spaceborne Remote Sensing XII, M. Strojnik, ed., Proc. SPIE 5543, 320-331 (2004).

2003 (2)

W. Hu, M. M. Hedman, and M. Zaldarriaga, "Benchmark parameters for CMB polarization experiments," Phys. Rev. D 67, 043004 (2003).
[CrossRef]

L. Page, C. Jackson, C. Barnes, C. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, D. N. Spergel, G. S. Tucker, D. T. Wilkinson, E. Wollack, and E. L. Wright, "The optical design and characterization of the microwave anisotropy probe," Astrophys. J. 585, 566-586 (2003).
[CrossRef]

2002 (2)

S. Hanany and D. P. Marrone, "Comparison of designs of off-axis Gregorian telescopes for millimeter-wave large focal-plane arrays," Appl. Opt. 41, 4666-4670 (2002).
[CrossRef] [PubMed]

A. Benoît, P. Ade, A. Amblard, R. Ansari, E. Aubourg, J. Bartlett, J.-P. Bernard, R. S. Bhatia, A. Blanchard, J. J. Bock, A. Boscaleri, F. R. Bouchet, A. Bourrachot, P. Camus, F. Couchot, P. de Bernardis, J. Delabrouille, F.-X. Désert, O. Doré, M. Douspis, L. Dumoulin, X. Dupac, P. Filliatre, K. Ganga, F. Gannaway, B. Gautier, M. Giard, Y. Giraud-Héraud, R. Gispert, L. Guglielmi, J.-C. Hamilton, S. Hanany, S. Henrot-Versillé, V. V. Hristov, J. Kaplan, G. Lagache, J.-M. Lamarre, A. E. Lange, K. Madet, B. Maffei, D. Marrone, S. Masi, J. A. Murphy, F. Naraghi, F. Nati, G. Perrin, M. Piat, J.-L. Puget, D. Santos, R. V. Sudiwala, J.-C. Vanel, D. Vibert, E. Wakui, and D. Yvon, "Archeops: a high resolution, large sky coverage balloon experiment for mapping cosmic microwave background anisotropies," Astropart. Phys. 17, 101-124 (2002).
[CrossRef]

2001 (1)

C. Granet, "Designing classical dragonian offset dual-reflector antennas from combinations of prescribed geometric parameters," IEEE Antennas Propag. Mag. 43, 1045-9243 (2001).
[CrossRef]

1990 (1)

W. Rusch, A. J. Prata, Y. Rahmat-Samii, and R. Shore, "Derivation and application of the equivalent paraboloid for classical offset Cassegrain and Gregorian antennas," IEEE Trans. Antennas Propag. 38, 1141-1149 (1990).
[CrossRef]

1978 (1)

C. Dragone, "Offset multireflector antennas with perfect pattern symmetry and polarization discrimination," AT&T Tech. J. 57, 2663-2684 (1978).

1966 (1)

J. Ruze, "Antenna tolerance theory: a review," Proc. IEEE 54, 633-640 (1966).
[CrossRef]

Appl. Opt. (2)

Astropart. Phys. (1)

A. Benoît, P. Ade, A. Amblard, R. Ansari, E. Aubourg, J. Bartlett, J.-P. Bernard, R. S. Bhatia, A. Blanchard, J. J. Bock, A. Boscaleri, F. R. Bouchet, A. Bourrachot, P. Camus, F. Couchot, P. de Bernardis, J. Delabrouille, F.-X. Désert, O. Doré, M. Douspis, L. Dumoulin, X. Dupac, P. Filliatre, K. Ganga, F. Gannaway, B. Gautier, M. Giard, Y. Giraud-Héraud, R. Gispert, L. Guglielmi, J.-C. Hamilton, S. Hanany, S. Henrot-Versillé, V. V. Hristov, J. Kaplan, G. Lagache, J.-M. Lamarre, A. E. Lange, K. Madet, B. Maffei, D. Marrone, S. Masi, J. A. Murphy, F. Naraghi, F. Nati, G. Perrin, M. Piat, J.-L. Puget, D. Santos, R. V. Sudiwala, J.-C. Vanel, D. Vibert, E. Wakui, and D. Yvon, "Archeops: a high resolution, large sky coverage balloon experiment for mapping cosmic microwave background anisotropies," Astropart. Phys. 17, 101-124 (2002).
[CrossRef]

Astrophys. J. (1)

L. Page, C. Jackson, C. Barnes, C. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, D. N. Spergel, G. S. Tucker, D. T. Wilkinson, E. Wollack, and E. L. Wright, "The optical design and characterization of the microwave anisotropy probe," Astrophys. J. 585, 566-586 (2003).
[CrossRef]

AT&T Tech. J. (1)

C. Dragone, "Offset multireflector antennas with perfect pattern symmetry and polarization discrimination," AT&T Tech. J. 57, 2663-2684 (1978).

Bull. Am. Astron. Soc. (1)

L. B. Newburgh, Berkeley Collaboration, University of California, Caltech Collaboration, Columbia University Collaboration, GSFC Collaboration, Harvard-Smithsonian CfA Collaboration, JPL Collaboration, University of Chicago Collaboration, Kavli Institute, Stanford University Collaboration, Kavli Institute, University of Miami Collaboration, University of Oxford Collaboration, and Princeton University Collaboration, "QUIET: Q U imaging experiment for detection of the CMBR polarization," Bull. Am. Astron. Soc. 37, 1429 (2005).

IEEE Antennas Propag. Mag. (2)

C. Granet, "Designing classical dragonian offset dual-reflector antennas from combinations of prescribed geometric parameters," IEEE Antennas Propag. Mag. 43, 1045-9243 (2001).
[CrossRef]

C. Granet and G. L. James, "Design of currugated horns: a primer," IEEE Antennas Propag. Mag. 47, 76-84 (2005).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

W. Rusch, A. J. Prata, Y. Rahmat-Samii, and R. Shore, "Derivation and application of the equivalent paraboloid for classical offset Cassegrain and Gregorian antennas," IEEE Trans. Antennas Propag. 38, 1141-1149 (1990).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

D. O'Dea, A. Challinor, and B. R. Johnson, "Systematic errors in cosmic microwave background polarization measurements," Mon. Not. R. Astron. Soc. 376, 1767-1783 (2007).
[CrossRef]

Phys. Rev. D (1)

W. Hu, M. M. Hedman, and M. Zaldarriaga, "Benchmark parameters for CMB polarization experiments," Phys. Rev. D 67, 043004 (2003).
[CrossRef]

Proc. IEEE (1)

J. Ruze, "Antenna tolerance theory: a review," Proc. IEEE 54, 633-640 (1966).
[CrossRef]

Other (10)

M. L. Sharp, Behavior and Design of Aluminum Structures (McGraw-Hill, 1993).

TICRA, "Grasp9:electromagnetic analysis of reflector antenna and scatterers," http://www.ticra.dk.

A. D. Olver, P. J. B. Clarricoats, A. A. Kishk, and L. Shafai, Microwave Horns and Feeds (IEEE, 1994).
[CrossRef]

Y. Mizugutch, A. M., and H. Yokoi, "Offset dual reflector antenna," in Antennas and Propagation Society International Symposium (IEEE, 1976), Vol. 14, pp. 2-5.

A. C. Taylor, A. Challinor, D. Goldie, K. Grainge, M. E. Jones, A. N. Lasenby, S. Withington, G. Yassin, W. K. Gear, L. Piccirillo, P. Ade, P. D. Mauskopf, B. Maffei, and G. Pisano, "CLOVER--a new instrument for measuring the b-mode polarization of the CMB," arXiv.org e-Print archive, astro-ph/0407148, submitted 7 July 2004, http://arxiv.org/abs/astro-ph/0407148.

P. Oxley, P. A. Ade, C. Baccigalupi, P. de Bernardis, H.-M. Cho, M. J. Devlin, S. Hanany, B. R. Johnson, T. Jones, A. T. Lee, T. Matsumura, A. D. Miller, M. Milligan, T. Renbarger, H. G. Spieler, R. Stompor, G. S. Tucker, and M. Zaldarriaga, "The EBEX experiment," in Infrared Spaceborne Remote Sensing XII, M. Strojnik, ed., Proc. SPIE 5543, 320-331 (2004).

P. Collaboration, http://bolo.berkeley.edu/polarbear.

Q. Collaboration, http://quiet.uchicago.edu/.

E. Serabyn, "Wide-field imaging optics for submm arrays," in ASP Conference Series 75: Multi-Feed Systems for Radio Telescopes, Astronomical Society of the Pacific Conference Series, D. T. Emerson and J. M. Payne, eds. (Astronomical Society of the Pacific, 1995), Vol. 75, pp. 74-81.

ZEMAX Development Corporation, "Zemax: software for optical system design," http://www.zemax.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagrams of two Mizuguchi–Dragone configurations. For each, the chief ray is shown as the thick black line. The ± 2 ° off-axis beams are shown in gray. Both have the same aperture diameter and EFL, and thus, the same F number.

Fig. 2
Fig. 2

Strehl ratios across the focal plane, calculated at 150   GHz . Crossed shows a clear advantage in terms of DLFOV. A design is considered diffraction-limited if the Strehl ratio is above 0.8.

Fig. 3
Fig. 3

Copolarized beams for both the (a) crossed and (b) Gregorian. Strehl ratio contours calculated independently by ray tracing for different points in the focal plane are superimposed for comparison. The beams were calculated for 150   GHz . The crossed shows a clear advantage in terms of consistency of beam shape over a larger DLFOV.

Fig. 4
Fig. 4

Cross polarization across the focal planes. The top two panels are the cross-polarized beams produced by grasp9. Each feedhorn was rotated about the boresight to null the cross polarization on the middle of the beam, resulting in a characteristic double-lobe pattern. The gray scale is in decibels relative to the peak of the copolarization beam. Note that the two color scales are different. The Strehl ratios generated from ray tracing are overplotted. The bottom two panels are contour plots of the maximum value of the cross polarization in each beam.

Fig. 5
Fig. 5

Gain mismatch, a. The gray scale represents the level of differential gain between the x- and the y-polarized beams. It was calculated for each field position shown in Fig. 3. The Strehl ratios are overplotted to delineate the DLFOV.

Fig. 6
Fig. 6

Displacement, d. The arrows represent the displacement between the centers of the x- and y-polarized beams. The scale is shown below the two figures and is measured in terms of absolute displacement in degrees. For reference, the Gaussian width of the beams is σ 0.03 ° . The Strehl ratios are overplotted to delineate the DLFOV.

Fig. 7
Fig. 7

Differential ellipticity, q. Differential ellipticity results in the familiar cloverleaf pattern leakage of intensity into polarization. It was calculated for each field position shown in Fig. 3. The Strehl ratios are overplotted to delineate the DLFOV.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

B ( A , n ^ ; b , e ) = A × exp [ 1 2 σ ( ( n 1 b 1 ) 2 ( 1 + e ) 2 ) + ( ( n 2 b 2 ) 2 ( 1 e ) 2 ) ] .
B ( A a , n ^ ; b a , e a ) B ( A b , n ^ ; b b , e b ) .
Differential   gain:   a = A a A b ( A a + A b ) / 2 ,
Differential   ellipticity:   q = ( e a e b ) / 2 ,
Differential   pointing:   d = b a b b .

Metrics