Abstract

When a digital hologram is reconstructed, only points located at the reconstruction distance are in focus. We have developed a novel technique for creating an in-focus image of the macroscopic objects encoded in a digital hologram. This extended focused image is created by combining numerical reconstructions with depth information extracted by using our depth-from-focus algorithm. To our knowledge, this is the first technique that creates extended focused images of digital holograms encoding macroscopic objects. We present results for digital holograms containing low- and high-contrast macroscopic objects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kreis, Handbook of Holographic Interferometry (Wiley-Vch, 2005).
  2. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. . 26, 1124-1132 (1987).
  3. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).
  4. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
  5. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002).
    [CrossRef]
  6. J. Maycock, C. P. McElhinney, B. H. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, “Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms.” Appl. Opt. 45, 2975-2985 (2006).
    [CrossRef]
  7. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636-653 (2006) p. 636.
  8. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography, D. Parsons, trans. (Consultants Bureau, 1980).
  9. D. Kim and B. Javidi, “Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography,” Opt. Express 12, 5539-5548 (2004).
    [CrossRef]
  10. B. Javidi and D. Kim, “Three-dimensional-object recognition by use of single-exposure on-axis digital holography,” Opt. Lett. 30, 236-238 (2005).
    [CrossRef]
  11. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492-4506 (2005).
    [CrossRef]
  12. T. J. Naughton, J. B. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for Internet transmission of three-dimensional images,” Appl. Opt. 42, 4758-4764 (2003).
    [CrossRef]
  13. I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975-983 (2006).
    [CrossRef]
  14. A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625-2630 (2006).
    [CrossRef]
  15. C. P. McElhinney, A. E. Shortt, T. J. Naughton, and B. Javidi, “Blockwise discrete Fourier transform analysis of digital hologram data of three-dimensional objects,” Proc. SPIE 5557, 62-69 (2004).
  16. E. Darakis and J. J. Soraghan, “Reconstruction domain compression of phase-shifting digital holograms,” Appl. Opt. 46, 351-356 (2007).
    [CrossRef]
  17. N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, “Speckle removal using a maximum-likelihood technique with isoline gray-level regularization,” J. Opt. Soc. Am. A 21, 2283-2291(2004).
  18. J. Maycock, B. H. Hennelly, J. B. McDonald, T. J. Naughton, Y. Frauel, A. Castro, and B. Javidi, “Reduction of speckle in digital holography by discrete Fourier filtering.” J. Opt. Soc. Am. A 24, 1617-1622 (2007).
    [CrossRef]
  19. T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1, 6-25 (2004).
    [CrossRef]
  20. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
  21. Y. Takari, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999).
  22. T.-C. Poon, T. Kim, G. Indebetouw, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Twin-image elimination experiments for three-dimensional images in optical scanning holography,” Opt. Lett. 25, 215-217 (2000).
    [CrossRef]
  23. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221-1223 (1998).
  24. L. Xu, X. Peng, J. Miao, and A. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001).
    [CrossRef]
  25. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
  26. P. Ferraro, G. Coppola, S. Nicola, A. Finizio, and G. Peirattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257-1259 (2003).
    [CrossRef]
  27. G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
    [CrossRef]
  28. C. Mann, L. Yu, C. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005).
    [CrossRef]
  29. P. Ferraro, S. Grilli, D. Alfieri, S. D. Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738-6749 (2005).
    [CrossRef]
  30. M. Gustafsson and M. Sebesta, “Refractometry of microscopic objects with digital holography,” Appl. Opt. 43, 4796-4801(2004).
    [CrossRef]
  31. M. Danesh Panah and B. Javidi, “Segmentation of 3D holographic images using bivariate jointly distributed region snake,” Opt. Express 14, 5143-5153 (2006).
    [CrossRef]
  32. C. P. McElhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. J. Naughton, “Depth-independent segmentation of three-dimensional objects encoded in single perspectives of digital holograms,” Opt. Lett. 32, 1229-1231 (2007).
    [CrossRef]
  33. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000).
    [CrossRef]
  34. Y. Frauel and B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478-1480 (2001).
    [CrossRef]
  35. B. Javidi, S. Yeom, I. Moon, and M. Daneshpanah, “Real-time automated 3D sensing, detection and recognition of dynamic biological micro-organic events,” Opt. Express 14, 3806-3829(2006).
    [CrossRef]
  36. R. J. Pieper and A. Korpel, “Image processing for extended depth of field,” Appl. Opt. 22, 1449-1453 (1983).
  37. L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A 6, 396-400 (2004).
    [CrossRef]
  38. L. Xu, J. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng. 39, 3214-3219(2000).
  39. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693-2703 (1974).
  40. J. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).
  41. H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).
  42. J. Gillespie and R. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19-25(1989).
    [CrossRef]
  43. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A 21, 2424-2430 (2004).
    [CrossRef]
  44. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy,” Opt. Express 14, 5895-5908 (2006).
    [CrossRef]
  45. E. Malkiel, J. N. Abras and J. Katz, “Automated scanning and measurements of particle distributions within a holographic reconstructed volume,” Meas. Sci. Technol. 15, 601-612(2004).
  46. N. Burns and J. Watson, “Data extraction from underwater holograms of marine organisms,” in OCEANS 2007--Europe (IEEE, 2007), pp. 1-6.
    [CrossRef]
  47. C. P. McElhinney, B. H. Hennelly, J. B. McDonald, and T. J. Naughton are preparing a manuscript to be titled “Multiple object segmentation in macroscopic three-dimensional scenes from a single perspective using digital holography.”
  48. M. Subbarao, T. Choi, and A. Nikzad,, “Focusing techniques,” Opt. Eng. 32, 2824-2836 (1993).
  49. J. R. Fienup, “Invariant error metrics for image reconstruction,” Appl. Opt. 36, 8352-8357 (1997).
  50. S. Frey, A. Thelen, S. Hirsch, and P. Hering, “Generation of digital textured surface models from hologram recordings,” Appl. Opt. 46, 1986-1993 (2007).
    [CrossRef]

2007

2006

2005

2004

M. Gustafsson and M. Sebesta, “Refractometry of microscopic objects with digital holography,” Appl. Opt. 43, 4796-4801(2004).
[CrossRef]

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A 6, 396-400 (2004).
[CrossRef]

C. P. McElhinney, A. E. Shortt, T. J. Naughton, and B. Javidi, “Blockwise discrete Fourier transform analysis of digital hologram data of three-dimensional objects,” Proc. SPIE 5557, 62-69 (2004).

D. Kim and B. Javidi, “Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography,” Opt. Express 12, 5539-5548 (2004).
[CrossRef]

N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, “Speckle removal using a maximum-likelihood technique with isoline gray-level regularization,” J. Opt. Soc. Am. A 21, 2283-2291(2004).

T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1, 6-25 (2004).
[CrossRef]

E. Malkiel, J. N. Abras and J. Katz, “Automated scanning and measurements of particle distributions within a holographic reconstructed volume,” Meas. Sci. Technol. 15, 601-612(2004).

M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A 21, 2424-2430 (2004).
[CrossRef]

2003

2002

2001

2000

1999

1998

1997

1993

M. Subbarao, T. Choi, and A. Nikzad,, “Focusing techniques,” Opt. Eng. 32, 2824-2836 (1993).

1989

J. Gillespie and R. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19-25(1989).
[CrossRef]

1987

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. . 26, 1124-1132 (1987).

1983

1974

Abras, J. N.

E. Malkiel, J. N. Abras and J. Katz, “Automated scanning and measurements of particle distributions within a holographic reconstructed volume,” Meas. Sci. Technol. 15, 601-612(2004).

Alfieri, D.

Asundi, A.

L. Xu, J. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng. 39, 3214-3219(2000).

Bertaux, N.

Brangaccio, D. J.

Bruning, J. H.

Burns, N.

N. Burns and J. Watson, “Data extraction from underwater holograms of marine organisms,” in OCEANS 2007--Europe (IEEE, 2007), pp. 1-6.
[CrossRef]

Callens, N.

Carapezza, E.

Castro, A.

Caulfield, H. J.

H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).

Choi, T.

M. Subbarao, T. Choi, and A. Nikzad,, “Focusing techniques,” Opt. Eng. 32, 2824-2836 (1993).

Coppola, G.

Cuche, E.

Danesh Panah, M.

Daneshpanah, M.

Darakis, E.

Depeursinge, C.

Dubois, F.

Ferraro, P.

Fienup, J. R.

Finizio, A.

Frauel, Y.

Frey, S.

Froning, P.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Gallagher, J. E.

Gillespie, J.

J. Gillespie and R. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19-25(1989).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

Grilli, S.

Gustafsson, M.

Hennelly, B. H.

Hering, P.

Herriott, D. R.

Hirsch, S.

Indebetouw, G.

Javidi, B.

J. Maycock, B. H. Hennelly, J. B. McDonald, T. J. Naughton, Y. Frauel, A. Castro, and B. Javidi, “Reduction of speckle in digital holography by discrete Fourier filtering.” J. Opt. Soc. Am. A 24, 1617-1622 (2007).
[CrossRef]

C. P. McElhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. J. Naughton, “Depth-independent segmentation of three-dimensional objects encoded in single perspectives of digital holograms,” Opt. Lett. 32, 1229-1231 (2007).
[CrossRef]

B. Javidi, S. Yeom, I. Moon, and M. Daneshpanah, “Real-time automated 3D sensing, detection and recognition of dynamic biological micro-organic events,” Opt. Express 14, 3806-3829(2006).
[CrossRef]

M. Danesh Panah and B. Javidi, “Segmentation of 3D holographic images using bivariate jointly distributed region snake,” Opt. Express 14, 5143-5153 (2006).
[CrossRef]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625-2630 (2006).
[CrossRef]

J. Maycock, C. P. McElhinney, B. H. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, “Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms.” Appl. Opt. 45, 2975-2985 (2006).
[CrossRef]

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636-653 (2006) p. 636.

B. Javidi and D. Kim, “Three-dimensional-object recognition by use of single-exposure on-axis digital holography,” Opt. Lett. 30, 236-238 (2005).
[CrossRef]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492-4506 (2005).
[CrossRef]

P. Ferraro, S. Grilli, D. Alfieri, S. D. Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738-6749 (2005).
[CrossRef]

D. Kim and B. Javidi, “Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography,” Opt. Express 12, 5539-5548 (2004).
[CrossRef]

C. P. McElhinney, A. E. Shortt, T. J. Naughton, and B. Javidi, “Blockwise discrete Fourier transform analysis of digital hologram data of three-dimensional objects,” Proc. SPIE 5557, 62-69 (2004).

N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, “Speckle removal using a maximum-likelihood technique with isoline gray-level regularization,” J. Opt. Soc. Am. A 21, 2283-2291(2004).

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002).
[CrossRef]

Y. Frauel and B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478-1480 (2001).
[CrossRef]

B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000).
[CrossRef]

Jin, H.

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A 6, 396-400 (2004).
[CrossRef]

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).

Katz, J.

E. Malkiel, J. N. Abras and J. Katz, “Automated scanning and measurements of particle distributions within a holographic reconstructed volume,” Meas. Sci. Technol. 15, 601-612(2004).

Kawai, H.

Kim, D.

Kim, M.

Kim, T.

King, R.

J. Gillespie and R. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19-25(1989).
[CrossRef]

Korpel, A.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry (Wiley-Vch, 2005).

Li, Y.

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A 6, 396-400 (2004).
[CrossRef]

Liebling, M.

Lo, C.

Ma, L.

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A 6, 396-400 (2004).
[CrossRef]

Malkiel, E.

E. Malkiel, J. N. Abras and J. Katz, “Automated scanning and measurements of particle distributions within a holographic reconstructed volume,” Meas. Sci. Technol. 15, 601-612(2004).

Mann, C.

Marquet, P.

Matoba, O.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636-653 (2006) p. 636.

Maycock, J.

McDonald, J. B.

McElhinney, C. P.

C. P. McElhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. J. Naughton, “Depth-independent segmentation of three-dimensional objects encoded in single perspectives of digital holograms,” Opt. Lett. 32, 1229-1231 (2007).
[CrossRef]

J. Maycock, C. P. McElhinney, B. H. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, “Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms.” Appl. Opt. 45, 2975-2985 (2006).
[CrossRef]

C. P. McElhinney, A. E. Shortt, T. J. Naughton, and B. Javidi, “Blockwise discrete Fourier transform analysis of digital hologram data of three-dimensional objects,” Proc. SPIE 5557, 62-69 (2004).

C. P. McElhinney, B. H. Hennelly, J. B. McDonald, and T. J. Naughton are preparing a manuscript to be titled “Multiple object segmentation in macroscopic three-dimensional scenes from a single perspective using digital holography.”

Merzlyakov, N. S.

L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography, D. Parsons, trans. (Consultants Bureau, 1980).

Miao, J.

L. Xu, X. Peng, J. Miao, and A. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001).
[CrossRef]

L. Xu, J. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng. 39, 3214-3219(2000).

Mills, G. A.

Moon, I.

Naughton, T. J.

J. Maycock, B. H. Hennelly, J. B. McDonald, T. J. Naughton, Y. Frauel, A. Castro, and B. Javidi, “Reduction of speckle in digital holography by discrete Fourier filtering.” J. Opt. Soc. Am. A 24, 1617-1622 (2007).
[CrossRef]

C. P. McElhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. J. Naughton, “Depth-independent segmentation of three-dimensional objects encoded in single perspectives of digital holograms,” Opt. Lett. 32, 1229-1231 (2007).
[CrossRef]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625-2630 (2006).
[CrossRef]

J. Maycock, C. P. McElhinney, B. H. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, “Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms.” Appl. Opt. 45, 2975-2985 (2006).
[CrossRef]

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636-653 (2006) p. 636.

C. P. McElhinney, A. E. Shortt, T. J. Naughton, and B. Javidi, “Blockwise discrete Fourier transform analysis of digital hologram data of three-dimensional objects,” Proc. SPIE 5557, 62-69 (2004).

T. J. Naughton, J. B. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for Internet transmission of three-dimensional images,” Appl. Opt. 42, 4758-4764 (2003).
[CrossRef]

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002).
[CrossRef]

C. P. McElhinney, B. H. Hennelly, J. B. McDonald, and T. J. Naughton are preparing a manuscript to be titled “Multiple object segmentation in macroscopic three-dimensional scenes from a single perspective using digital holography.”

Nicola, S.

Nicola, S. D.

Nikzad, A.

M. Subbarao, T. Choi, and A. Nikzad,, “Focusing techniques,” Opt. Eng. 32, 2824-2836 (1993).

Ohzu, H.

Onural, L.

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. . 26, 1124-1132 (1987).

Pedrini, G.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Peirattini, G.

Peng, X.

Pieper, R. J.

Pierattini, G.

Poon, T.-C.

Réfrégier, P.

Rosenfeld, D. P.

Santoyo, F.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Schilling, B. W.

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).

Schockaert, C.

Scott, P. D.

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. . 26, 1124-1132 (1987).

Sebesta, M.

Shinoda, K.

Shortt, A. E.

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625-2630 (2006).
[CrossRef]

C. P. McElhinney, A. E. Shortt, T. J. Naughton, and B. Javidi, “Blockwise discrete Fourier transform analysis of digital hologram data of three-dimensional objects,” Proc. SPIE 5557, 62-69 (2004).

Soraghan, J. J.

Striano, V.

Subbarao, M.

M. Subbarao, T. Choi, and A. Nikzad,, “Focusing techniques,” Opt. Eng. 32, 2824-2836 (1993).

Suzuki, Y.

Tajahuerce, E.

Takari, Y.

Thelen, A.

Tiziani, H.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Unser, M.

Wang, H.

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A 6, 396-400 (2004).
[CrossRef]

Watson, J.

N. Burns and J. Watson, “Data extraction from underwater holograms of marine organisms,” in OCEANS 2007--Europe (IEEE, 2007), pp. 1-6.
[CrossRef]

White, A. D.

Wu, M. H.

Xu, L.

L. Xu, X. Peng, J. Miao, and A. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001).
[CrossRef]

L. Xu, J. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng. 39, 3214-3219(2000).

Yamaguchi, I.

Yamamoto, K.

Yaroslavskii, L. P.

L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography, D. Parsons, trans. (Consultants Bureau, 1980).

Yeom, S.

Yokota, M.

Yourassowsky, C.

Yu, L.

Zhang, T.

Appl. Opt.

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002).
[CrossRef]

J. Maycock, C. P. McElhinney, B. H. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, “Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms.” Appl. Opt. 45, 2975-2985 (2006).
[CrossRef]

T. J. Naughton, J. B. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for Internet transmission of three-dimensional images,” Appl. Opt. 42, 4758-4764 (2003).
[CrossRef]

I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975-983 (2006).
[CrossRef]

E. Darakis and J. J. Soraghan, “Reconstruction domain compression of phase-shifting digital holograms,” Appl. Opt. 46, 351-356 (2007).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).

Y. Takari, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999).

L. Xu, X. Peng, J. Miao, and A. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).

M. Gustafsson and M. Sebesta, “Refractometry of microscopic objects with digital holography,” Appl. Opt. 43, 4796-4801(2004).
[CrossRef]

R. J. Pieper and A. Korpel, “Image processing for extended depth of field,” Appl. Opt. 22, 1449-1453 (1983).

J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693-2703 (1974).

J. R. Fienup, “Invariant error metrics for image reconstruction,” Appl. Opt. 36, 8352-8357 (1997).

S. Frey, A. Thelen, S. Hirsch, and P. Hering, “Generation of digital textured surface models from hologram recordings,” Appl. Opt. 46, 1986-1993 (2007).
[CrossRef]

J. Hologr. Speckle

T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1, 6-25 (2004).
[CrossRef]

J. Opt. A

L. Ma, H. Wang, Y. Li, and H. Jin, “Numerical reconstruction of digital holograms for three-dimensional shape measurement,” J. Opt. A 6, 396-400 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

E. Malkiel, J. N. Abras and J. Katz, “Automated scanning and measurements of particle distributions within a holographic reconstructed volume,” Meas. Sci. Technol. 15, 601-612(2004).

Opt. Commun.

G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Opt. Eng.

L. Xu, J. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng. 39, 3214-3219(2000).

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. . 26, 1124-1132 (1987).

M. Subbarao, T. Choi, and A. Nikzad,, “Focusing techniques,” Opt. Eng. 32, 2824-2836 (1993).

Opt. Express

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy,” Opt. Express 14, 5895-5908 (2006).
[CrossRef]

B. Javidi, S. Yeom, I. Moon, and M. Daneshpanah, “Real-time automated 3D sensing, detection and recognition of dynamic biological micro-organic events,” Opt. Express 14, 3806-3829(2006).
[CrossRef]

D. Kim and B. Javidi, “Distortion-tolerant 3-D object recognition by using single exposure on-axis digital holography,” Opt. Express 12, 5539-5548 (2004).
[CrossRef]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625-2630 (2006).
[CrossRef]

C. Mann, L. Yu, C. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005).
[CrossRef]

P. Ferraro, S. Grilli, D. Alfieri, S. D. Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738-6749 (2005).
[CrossRef]

M. Danesh Panah and B. Javidi, “Segmentation of 3D holographic images using bivariate jointly distributed region snake,” Opt. Express 14, 5143-5153 (2006).
[CrossRef]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492-4506 (2005).
[CrossRef]

Opt. Lett.

Pattern Recogn. Lett.

J. Gillespie and R. King, “The use of self-entropy as a focus measure in digital holography,” Pattern Recogn. Lett. 9, 19-25(1989).
[CrossRef]

Proc. IEEE

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636-653 (2006) p. 636.

Proc. SPIE

C. P. McElhinney, A. E. Shortt, T. J. Naughton, and B. Javidi, “Blockwise discrete Fourier transform analysis of digital hologram data of three-dimensional objects,” Proc. SPIE 5557, 62-69 (2004).

Other

L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography, D. Parsons, trans. (Consultants Bureau, 1980).

T. Kreis, Handbook of Holographic Interferometry (Wiley-Vch, 2005).

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).

J. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

H. J. Caulfield, Handbook of Optical Holography (Academic, 1979).

N. Burns and J. Watson, “Data extraction from underwater holograms of marine organisms,” in OCEANS 2007--Europe (IEEE, 2007), pp. 1-6.
[CrossRef]

C. P. McElhinney, B. H. Hennelly, J. B. McDonald, and T. J. Naughton are preparing a manuscript to be titled “Multiple object segmentation in macroscopic three-dimensional scenes from a single perspective using digital holography.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for PSI: P, polarizer; NDF, neutral-density filter; C, collimator; BE, beam expander; BS, beam splitter; RP, retardation plate; M, mirror.

Fig. 2
Fig. 2

Two bolts object DH: (a) numerical reconstruction and (b) variance plot for object blocks 1 and 2.

Fig. 3
Fig. 3

DFF process: step 1, numerically reconstruct over a range of depths; step 2, block process each reconstruction using variance; step 3, calculate depth map.

Fig. 4
Fig. 4

Two bolts object DH, reconstructions, and the nonoverlapping approach EFIs.

Fig. 5
Fig. 5

Accuracy and timing plot for the nonoverlapping approach EFIs created by using increasing numbers of reconstructions.

Fig. 6
Fig. 6

Two bolts object EFIs created using the (a) nonoverlapping approach and 11 reconstructions, (b) nonoverlapping approach and 151 reconstructions, (c) overlapping pointwise approach and 151 reconstructions, and (d) overlapping neighborhood approach and 151 reconstructions.

Fig. 7
Fig. 7

Two bolts object DH reconstructions for region 1 and the overlapping approach EFIs.

Fig. 8
Fig. 8

LEGO block object DH, reconstructions, and the overlapping approach EFIs.

Fig. 9
Fig. 9

Bolts object DH: (a) front focal plane reconstruction, (b) back focal plane reconstruction, (c)  EFI P .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

U z ( x , y ) = - i λ z exp ( i 2 π λ z ) H 0 ( x , y ) exp [ i π ( x 2 + y 2 ) λ z ] ,
V ( I z ) = 1 n 2 i = 1 n j = 1 n [ I z ( i , j ) - I z ¯ ] 2 ,
V z ( k , l ) = 1 n 2 x = k - n - 1 2 k + n - 1 2 y = l - n - 1 2 l + n - 1 2 [ I z ( x , y ) - I z ( k , l ) ¯ ] 2 .
I z ( k , l ) ¯ = 1 n 2 x = k - n - 1 2 k + n - 1 2 y = l - n - 1 2 l + n - 1 2 I z ( x , y ) .
V z NO ( r , s ) = 1 n 2 x = r n r n + n - 1 y = s n s n + n - 1 [ I z ( x , y ) - I z ( r n + n - 1 2 , s n + n - 1 2 ) ¯ ] ,
EFI NO ( k , l ) = I DMap ( r , s ) ( k , l ) ,
EFI P ( k , l ) = I DMap ( k , l ) ( k , l ) ,
EFI N ( k , l ) = 1 n 2 r = k - n - 1 2 k + n - 1 2 s = l - n - 1 2 l + n - 1 2 I DMap ( r , s ) ( k , l ) ,

Metrics