Abstract

We propose a parallel two-step phase-shifting digital holography technique capable of instantaneous measurement of three-dimensional objects, with a view toward measurement of dynamically moving objects. The technique is based on phase-shifting interferometry. The proposed technique carries out the two-step phase-shifting method at one time and can be optically implemented by using a phase-shifting array device located in the reference beam. The array device has a periodic two-step phase distribution, and its configuration is simplified compared with that required for three-step and four-step parallel phase-shifting digital holographies. Therefore the optical system of the proposed technique is more suitable for the realization of a parallel phase-shifting digital holography system. We conduct both a numerical simulation and a preliminary experiment in the proposed technique. The results of the simulation and the experiment agree well with those of sequential phase-shifting digital holography, and results are superior to those obtained by conventional digital holography using the Fresnel transform alone. Thus the effectiveness of the proposed technique is verified.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).
  2. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).
  3. U. Schnars, “Direct phase determination in hologram interferometory with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011-2015 (1994).
    [CrossRef]
  4. T.-C. Poon, “Recent progress in optical scanning holography” J. Hologr. Speckle 1, 6-25 (2004).
    [CrossRef]
  5. T. -C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).
    [CrossRef]
  6. G. Pedrini, P. Froning, H. Fessler, and H. J. Tiziani, “In-line digital holographic interferometry,” Appl. Opt. 37, 6262-6269(1998).
    [CrossRef]
  7. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212-214(2000).
    [CrossRef]
  8. Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731-733, (2002).
    [CrossRef]
  9. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257-1259 (2003).
    [CrossRef] [PubMed]
  10. Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
    [CrossRef]
  11. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567-574 (2000).
    [CrossRef]
  12. S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of the two-dimensional fractional-order Fourier transformation to particle field digital holography,” J. Opt. Soc. Am. A 19, 1537-1546(2002).
    [CrossRef]
  13. D. Lebrun, A. M. Benkouider, S. Coëtmellec, and M. Malek, “Particle field digital holographic reconstruction in arbitrary tilted planes,” Opt. Express 11, 224-229 (2003).
    [CrossRef] [PubMed]
  14. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827-833 (2003).
    [CrossRef] [PubMed]
  15. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
    [CrossRef]
  16. F. Dubois, L. Joannes, and J. -C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085-7094 (1999).
    [CrossRef]
  17. G. Indebetouw and P. Klysubun, “Space-time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017-2019 (1999).
    [CrossRef]
  18. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001).
    [CrossRef] [PubMed]
  19. L Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001).
    [CrossRef]
  20. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
    [CrossRef] [PubMed]
  21. P. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857-859 (2004).
    [CrossRef] [PubMed]
  22. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with diode illumination,” Opt. Lett. 29, 1132-1134 (2004).
    [CrossRef] [PubMed]
  23. M. Gustafsson and M. Sebesta, “Refractometry of microscopic objects with digital holography,” Appl. Opt. 43, 4796-4801(2004).
    [CrossRef] [PubMed]
  24. L. Martinez-Leon, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977-3984 (2005).
    [CrossRef] [PubMed]
  25. L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
    [CrossRef] [PubMed]
  26. W. K. Jeon and K. H. Chung, “Phase-contrast microscopy by in-line phase-shifting digital holography: shape measurement of a titanium pattern with nanometer axial resolution,” Opt. Eng. 46, 40506-1-3 (2007).
  27. T. A. Saucedo, F. M. Santoyo, M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Simultaneous two-dimensional endoscopic pulsed digital holography for evaluation of dynamic displacements,” Appl. Opt. 45, 4534-4539 (2006).
    [CrossRef]
  28. T. A. Saucedo, F. M. Santoyo, M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468-1475 (2006).
    [CrossRef] [PubMed]
  29. A Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630-1632(2000).
    [CrossRef]
  30. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Plerattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003).
    [CrossRef] [PubMed]
  31. T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
    [CrossRef]
  32. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000).
    [CrossRef]
  33. E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensioal object recognition by means of digital holography,” Appl. Opt. 40, 3877-3886 (2001).
    [CrossRef]
  34. Y. Frauel and B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478-1480 (2001).
    [CrossRef]
  35. Y. Frauel, E. Tajahuerce, M. Castro, and B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887-3893 (2001).
    [CrossRef]
  36. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002).
    [CrossRef] [PubMed]
  37. Y. Frauel, E. Tajahuerce, O. Matoba, M. Castro, and B. Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition,” Appl. Opt. 43, 452-462 (2004).
    [CrossRef] [PubMed]
  38. B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000).
    [CrossRef]
  39. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000).
    [CrossRef]
  40. S. Lai and M. A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283-289 (2000).
    [CrossRef]
  41. O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27, 321-323 (2002).
    [CrossRef]
  42. O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187-6192(2002).
    [CrossRef] [PubMed]
  43. S. Kishk and B. Javidi, “Watermarking of three-dimensional objects by digital holography,” Opt. Lett. 28, 167-169 (2003).
    [CrossRef] [PubMed]
  44. S. Kishk and B. Javidi, “3D object watermarking by a 3D hidden object,” Opt. Express 11, 874-888 (2003).
    [CrossRef] [PubMed]
  45. T.-C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography of secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
    [CrossRef] [PubMed]
  46. See, for example, J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  47. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  48. I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85-89(2001).
    [CrossRef]
  49. I. Yamaguchi, S. Ohta, and J. Kato, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
    [CrossRef]
  50. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  51. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid-holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999).
    [CrossRef]
  52. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
    [CrossRef]
  53. Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
    [CrossRef]
  54. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071(2004).
    [CrossRef]
  55. M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.
  56. Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
    [CrossRef] [PubMed]
  57. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
    [CrossRef] [PubMed]
  58. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877 (2006).
    [CrossRef] [PubMed]
  59. M. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 311414-1416 (2006).
    [CrossRef] [PubMed]
  60. T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 37, 2357-2360 (1997).
    [CrossRef]

2007

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

W. K. Jeon and K. H. Chung, “Phase-contrast microscopy by in-line phase-shifting digital holography: shape measurement of a titanium pattern with nanometer axial resolution,” Opt. Eng. 46, 40506-1-3 (2007).

2006

2005

L. Martinez-Leon, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977-3984 (2005).
[CrossRef] [PubMed]

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

2004

2003

2002

2001

2000

1999

1998

1997

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 37, 2357-2360 (1997).
[CrossRef]

1995

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

1994

1987

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).

1972

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Asundi, A. K.

Awatsuji, Y.

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071(2004).
[CrossRef]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

Benkouider, A. M.

Bertaux, N.

Cai, L. Z.

Castro, M.

Chung, K. H.

W. K. Jeon and K. H. Chung, “Phase-contrast microscopy by in-line phase-shifting digital holography: shape measurement of a titanium pattern with nanometer axial resolution,” Opt. Eng. 46, 40506-1-3 (2007).

Coëtmellec, S.

Coppola, G.

Cuche, E.

De la Torre Ibarra, M.

De Nicola, S.

Denis, L.

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

Depeursinge, C.

Devaney, A. J.

Doh, K.

T.-C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography of secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
[CrossRef] [PubMed]

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Dong, G. Y.

Dubois, F.

Ferraro, P.

Fessler, H.

Finizio, A.

Fournel, T.

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

Fournier, C.

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

Frauel, Y.

Froning, P.

Fujigaki, M.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

Fujii, A.

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
[CrossRef] [PubMed]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

Ge, B.

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
[CrossRef]

Goodman, J. W.

See, for example, J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Grilli, S.

Guo, P.

Gustafsson, M.

Indebetouw, G.

G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212-214(2000).
[CrossRef]

G. Indebetouw and P. Klysubun, “Space-time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017-2019 (1999).
[CrossRef]

Javidi, B.

Y. Frauel, E. Tajahuerce, O. Matoba, M. Castro, and B. Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition,” Appl. Opt. 43, 452-462 (2004).
[CrossRef] [PubMed]

S. Kishk and B. Javidi, “Watermarking of three-dimensional objects by digital holography,” Opt. Lett. 28, 167-169 (2003).
[CrossRef] [PubMed]

S. Kishk and B. Javidi, “3D object watermarking by a 3D hidden object,” Opt. Express 11, 874-888 (2003).
[CrossRef] [PubMed]

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002).
[CrossRef] [PubMed]

O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27, 321-323 (2002).
[CrossRef]

O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187-6192(2002).
[CrossRef] [PubMed]

Y. Frauel, E. Tajahuerce, M. Castro, and B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887-3893 (2001).
[CrossRef]

Y. Frauel and B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478-1480 (2001).
[CrossRef]

E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensioal object recognition by means of digital holography,” Appl. Opt. 40, 3877-3886 (2001).
[CrossRef]

B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000).
[CrossRef]

B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000).
[CrossRef]

E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000).
[CrossRef]

Jeon, W. K.

W. K. Jeon and K. H. Chung, “Phase-contrast microscopy by in-line phase-shifting digital holography: shape measurement of a titanium pattern with nanometer axial resolution,” Opt. Eng. 46, 40506-1-3 (2007).

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Jeulin, D.

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

Joannes, L.

Jüptner, W.

Jüptner, W. P. O.

T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 37, 2357-2360 (1997).
[CrossRef]

Kato, J.

I. Yamaguchi, S. Ohta, and J. Kato, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85-89(2001).
[CrossRef]

Kawai, H.

Kim, T.

Kishk, S.

Klysubun, P.

G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212-214(2000).
[CrossRef]

G. Indebetouw and P. Klysubun, “Space-time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017-2019 (1999).
[CrossRef]

Kreis, T. M.

T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 37, 2357-2360 (1997).
[CrossRef]

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Kronrod, M. A.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Kubota, T.

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071(2004).
[CrossRef]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

Lai, S.

S. Lai and M. A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283-289 (2000).
[CrossRef]

Lebrun, D.

Legros, J. -C.

Liu, Z.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731-733, (2002).
[CrossRef]

Lu, Q.

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
[CrossRef]

Magro, C.

Malek, M.

Marquet, P.

Martinez-Leon, L.

Massig, J. H.

Matoba, O.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Meng, H.

Meng, M. F.

Merzlyakov, N. S.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Miao, J.

Morimoto, Y.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

Murata, S.

Naughton, T.

Naughton, T. J.

Neifeld, M. A.

S. Lai and M. A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283-289 (2000).
[CrossRef]

Nitanai, E.

Nomura, T.

Numata, T.

Ohta, S.

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85-89(2001).
[CrossRef]

I. Yamaguchi, S. Ohta, and J. Kato, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

Ohzu, H.

Onural, L.

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).

Osten, W.

Özkul, C.

Pan, G.

Pedrini, G.

Peng, X.

Piano, E.

Pierattini, G.

Plerattini, G.

Pontiggia, C.

Poon, T.-C.

T.-C. Poon, “Recent progress in optical scanning holography” J. Hologr. Speckle 1, 6-25 (2004).
[CrossRef]

T.-C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography of secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
[CrossRef] [PubMed]

T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
[CrossRef]

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Psaltis, D.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731-733, (2002).
[CrossRef]

Repetto, L.

Santoyo, F. M.

Sasada, M.

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071(2004).
[CrossRef]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

Saucedo, T. A.

Schilling, B.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Schnars, U.

Scott, P. D.

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).

Sebesta, M.

Shen, X. X.

Shinoda, K.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Stadelmaier, A

Steckman, G. J.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731-733, (2002).
[CrossRef]

Suzuki, Y.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Tajahuerce, E.

Takahashi, I.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

Takaki, Y.

Tiziani, H. J.

Wang, Y. R.

Wu, M.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Xu, L

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Xu, X. F.

Yamaguchi, I.

Yang, X. L.

Yaroslavskii, L. P.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Yoneyama, S.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

Zhang, T.

Zhang, Y.

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
[CrossRef]

Appl. Opt.

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994).
[CrossRef] [PubMed]

G. Pedrini, P. Froning, H. Fessler, and H. J. Tiziani, “In-line digital holographic interferometry,” Appl. Opt. 37, 6262-6269(1998).
[CrossRef]

T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
[CrossRef]

F. Dubois, L. Joannes, and J. -C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085-7094 (1999).
[CrossRef]

Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid-holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
[CrossRef]

E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000).
[CrossRef]

E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensioal object recognition by means of digital holography,” Appl. Opt. 40, 3877-3886 (2001).
[CrossRef]

Y. Frauel, E. Tajahuerce, M. Castro, and B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887-3893 (2001).
[CrossRef]

L Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001).
[CrossRef]

I. Yamaguchi, S. Ohta, and J. Kato, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002).
[CrossRef] [PubMed]

G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
[CrossRef] [PubMed]

O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187-6192(2002).
[CrossRef] [PubMed]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827-833 (2003).
[CrossRef] [PubMed]

T.-C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography of secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
[CrossRef] [PubMed]

Y. Frauel, E. Tajahuerce, O. Matoba, M. Castro, and B. Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition,” Appl. Opt. 43, 452-462 (2004).
[CrossRef] [PubMed]

M. Gustafsson and M. Sebesta, “Refractometry of microscopic objects with digital holography,” Appl. Opt. 43, 4796-4801(2004).
[CrossRef] [PubMed]

L. Martinez-Leon, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977-3984 (2005).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Plerattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003).
[CrossRef] [PubMed]

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
[CrossRef] [PubMed]

T. A. Saucedo, F. M. Santoyo, M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Simultaneous two-dimensional endoscopic pulsed digital holography for evaluation of dynamic displacements,” Appl. Opt. 45, 4534-4539 (2006).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071(2004).
[CrossRef]

G. Indebetouw and P. Klysubun, “Space-time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017-2019 (1999).
[CrossRef]

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731-733, (2002).
[CrossRef]

Exp. Mech.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

J. Hologr. Speckle

T.-C. Poon, “Recent progress in optical scanning holography” J. Hologr. Speckle 1, 6-25 (2004).
[CrossRef]

J. Microsc.

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Commun.

S. Lai and M. A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283-289 (2000).
[CrossRef]

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
[CrossRef]

Opt. Eng.

W. K. Jeon and K. H. Chung, “Phase-contrast microscopy by in-line phase-shifting digital holography: shape measurement of a titanium pattern with nanometer axial resolution,” Opt. Eng. 46, 40506-1-3 (2007).

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).

T. M. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 37, 2357-2360 (1997).
[CrossRef]

Opt. Express

Opt. Laser Technol.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Opt. Lett.

B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000).
[CrossRef]

G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212-214(2000).
[CrossRef]

B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000).
[CrossRef]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

Y. Frauel and B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478-1480 (2001).
[CrossRef]

A Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630-1632(2000).
[CrossRef]

P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, “Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time,” Opt. Lett. 28, 1257-1259 (2003).
[CrossRef] [PubMed]

M. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 311414-1416 (2006).
[CrossRef] [PubMed]

P. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857-859 (2004).
[CrossRef] [PubMed]

L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with diode illumination,” Opt. Lett. 29, 1132-1134 (2004).
[CrossRef] [PubMed]

S. Kishk and B. Javidi, “Watermarking of three-dimensional objects by digital holography,” Opt. Lett. 28, 167-169 (2003).
[CrossRef] [PubMed]

O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27, 321-323 (2002).
[CrossRef]

Opt. Rev.

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85-89(2001).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Sov. Phys. Tech. Phys.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Other

T. -C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).
[CrossRef]

See, for example, J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of parallel two-step phase-shifting digital holography. (a) Example of optical implementation system. (b)  Phase-shifting array device and the distribution of the reference wave for the parallel two-step phase-shifting digital holography.

Fig. 2
Fig. 2

Processing procedure for reconstruction for parallel two-step phase-shifting digital holography.

Fig. 3
Fig. 3

Object and numerically reconstructed images consisting of 512 × 512 pixels. Object, (a) amplitude distribution, (b) phase distribution. Images reconstructed by the proposed parallel phase-shifting digital holography, (c) amplitude distribution, (d) phase distribution. Images reconstructed by the parallel three-step phase-shifting digital holography, (e) amplitude distribution, (f) phase distribution. Images reconstructed by the parallel four-step phase-shifting digital holography, (g) amplitude distribution, (h) phase distribution. Images reconstructed by the sequential four-step phase-shifting digital holography, (i) amplitude distribution, (j) phase distribution. Images reconstructed by the Fresnel transform alone, (k) amplitude distribution, (l) phase distribution.

Fig. 4
Fig. 4

Optical system for the preliminary experiment. (a) Schematic diagram of the recording system. QWP, quarter-wave plate; HWP, half-wave plate; M, mirror; HM, half mirror; BE, beam expander; CL, collimating lens; BS, beam splitter; CCD, CCD camera. (b) Photograph of the three-dimensional object.

Fig. 5
Fig. 5

Reconstructed images from optical recording. Images reconstructed by the sequential four-step phase-shifting digital holography, focused on (a)  z = 28 cm and (b)  z = 36 cm . Images reconstructed by the proposed parallel phase-shifting digital holography, focused on (c)  z = 28 cm and (d)  z = 36 cm . Images reconstructed by the Fresnel transform alone, focused on (e)  z = 28 cm and (f)  z = 36 cm . z is the distance from the CCD to the focused plane.

Fig. 6
Fig. 6

Effects of misalignment of the image of the phase-shifting array device and the image sensor pixel. (a) Relation between RMS error of amplitude distribution and length of misalignment normalized by the diagonal length of image sensor pixel. (b) Relation between RMS error of phase distribution and length of misalignment normalized by the diagonal length of image sensor pixel.

Tables (2)

Tables Icon

Table 1 Correlation Coefficients between the Object and the Reconstructed Images of Phase-Shifting Digital Holographies and of the Fresnel Transform Alone: Numerical Simulation

Tables Icon

Table 2 Correlation coefficients between the Reconstructed Images of Sequential Four-Step and Proposed Parallel Phase-Shifting Digital Holographies and of the Fresnel Transform Alone: Preliminary Experiment

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u ( x , y ) = 1 2 A r [ { I ( 0 ) a ( x , y ) } i { I ( π 2 ) a ( x , y ) } ] .
a ( x , y ) = v v 2 2 w 2 ,
v = I ( 0 ) + I ( π 2 ) + 2 A r 2 ,
w = I ( 0 ) 2 + I ( π 2 ) 2 + 4 A r 4 .

Metrics