Abstract

In this paper we present two approaches for extracting the surface profile as well as obtaining 3D imaging of near field objects by usage of partial coherence and digital holography. In the first approach a light source with given temporal partial coherence is used to illuminate a near field object. The reflected light is interfered with the reference source. By computing the local contrast of the generated fringes one may estimate the 3D topography and the profile of the object. This approach extracts the 3D information from a single image, and its accuracy does not depend on triangulation angle like in fringe projection methods. The second approach is tomography based. There we illuminate the object from several slightly different angles, and for each we compute the wrapped phase using digital holography techniques. Combining the wrapped phase estimation from several points of projection allows calculating the unwrapped phase and therefore the true profile of even a phase-only object. Increasing the number of points of view decreases the relative error of the estimated profile.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. G. Leclerc and A. F. Bobick, “The direct computation of height from shading,” in IEEE Conference on Computer Vision & Pattern Recognition (IEEE, 1991), pp. 552-558.
  2. R. Zhang and M. Shah, “Shape from intensity gradient,” IEEE Trans. Syst. Man Cybern., Part A Syst. Humans 29, 318(1999).
    [CrossRef]
  3. “Height recovery from intensity gradients,” in IEEE Conference on Computer Vision & Pattern Recognition (IEEE, 1994), pp. 508-513 .
  4. B. K. P. Horn, “Height and gradient from shading,” Int. J. Comput. Vis. 5, 37-76 (1990).
    [CrossRef]
  5. A. M. Bruckstein, “On shape from shading,” Comput. Vis. Graph. Image Process. 44, 139-154 (1988).
    [CrossRef]
  6. M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp.1162-1164.
  7. M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
    [CrossRef]
  8. S. Winkelbach and F. M. Wahl, “Shape from single stripe pattern illumination,” in (DAGM 2002) Pattern Recognition, Vol. 2449 of Lecture Notes in Computer Science, L.Van Gool, ed. (Springer, 2002), pp. 240-247.
    [CrossRef]
  9. T. P. Koninckx and L. Van Gool, “Efficient, active 3D acquisition, based on a pattern-specific snake,” in (DAGM 2002) Pattern Recognition, Vol. 2449 of Lecture Notes in Computer Science, L.Van Gool, ed. (Springer, 2002), pp. 557-565.
    [CrossRef]
  10. R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56(1997).
    [CrossRef]
  11. G. Zigelman, R. Kimmel, and N. Kiryati, “Texure mapping using surface flattening via multi-dimensional scaling,” IEEE Trans. Vis. Comput. Graph. 8, 198-207 (2002).
    [CrossRef]
  12. L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” presented at the 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Padova, Italy, July, 2002.
  13. P. Besl, “Active optical range imaging sensors,” Mach. Vision Applications 1, 127-152 (1988).
    [CrossRef]
  14. E. Horn and N. Kiryati, “Toward optimal structured light patterns,” presented at the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, Canada, May 1997.
  15. T. Sawatari,, “Real-time noncontacting distance measurement using optical triangulation,” Appl. Opt. 15, 2821-2827(1976).
    [CrossRef] [PubMed]
  16. G. Hausler and D. Ritter, “Parallel three-dimensional sensing by color-coded triangulation,” Appl. Opt. 32, 7164-7170(1993).
    [CrossRef] [PubMed]
  17. R. G. Dorsch, G. Hausler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306-1312 (1994).
    [CrossRef] [PubMed]
  18. D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781 (2005 ).
  19. D. Gabor, “Microscopy by reconstructed wave fronts,” Proc. R. Soc. London, Ser. A 197, 454-487 (1949).
    [CrossRef]
  20. E. N. Leith, “Overview of the development of holography” J. Imaging Sci. Technol. 41, 201-204 (1997).
  21. E. N. Leith and J. Upatnieks, “Wavefront reconstruction and communication theory,” J. Opt. Soc. Am. 52, 1123-1130(1962).
    [CrossRef]
  22. Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave fields of its scattered radiation,” Opt. Spectrosc. 15, 279-284 (1964).
  23. R. V. Pole, “3-D imaging and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20-22 (1967).
    [CrossRef]
  24. A. Stern and B. Javidi, “Improved-resolution digital holography using the generalized sampling theorem for locally band-limited fields,” J. Opt. Soc. Am. A 23, 1227-1235 (2006).
    [CrossRef]
  25. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  26. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190(2006).
    [CrossRef]
  27. C. Mann, L. Yu, C. -M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005).
    [CrossRef] [PubMed]
  28. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  29. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003).
    [CrossRef] [PubMed]
  30. I. Yamaguchi and T. Zhang, “Phase shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  31. J. H. Bruning, D. R. Herriot, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693-2703 (1974).
    [CrossRef] [PubMed]
  32. C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point diffraction interferometer,” Opt. Express 13, 1885-1891 (2005).
    [CrossRef] [PubMed]
  33. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
    [CrossRef] [PubMed]
  34. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
    [CrossRef] [PubMed]
  35. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  36. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
    [CrossRef] [PubMed]
  37. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008).
    [CrossRef] [PubMed]
  38. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2005).
    [CrossRef] [PubMed]
  39. V. Mico, J. García, C. Ferreira, D. Sylman, and Z. Zalevsky, “Spatial information transmission using axial temporal coherence coding,” Opt. Lett. 32, 736-738 (2007).
    [CrossRef] [PubMed]
  40. J. Rosen and A. Yariv, “General theorem of spatial coherence: application to three-dimensional imaging,” J. Opt. Soc. Am. A 13, 2091-2095 (1996).
    [CrossRef]
  41. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  42. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
    [CrossRef]
  43. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806-1812 (2005).
    [CrossRef] [PubMed]
  44. G. Pedrini and S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik (Jena) 112, 427-432 (2001).
    [CrossRef]
  45. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006).
    [CrossRef] [PubMed]
  46. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013(2006).
    [CrossRef] [PubMed]
  47. W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171-173(2008).
    [CrossRef] [PubMed]
  48. T. Dresel, G. Hausler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919-925 (1992).
    [CrossRef] [PubMed]
  49. H. Stark and H. Peng, “Shape estimation in computer tomography from minimal data,” J. Opt. Soc. Am. A 5, 331-337(1988).
    [CrossRef] [PubMed]
  50. T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007).
    [CrossRef]
  51. B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007).
    [CrossRef] [PubMed]
  52. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31, 2759-2761 (2006).
    [CrossRef] [PubMed]
  53. M. M. Hossain, D. S. Mehta, and C. Shakher, “Refractive index determination: an application of lensless Fourier digital holography,” Opt. Eng. 45, 106203-106207 (2006).
    [CrossRef]

2008 (2)

2007 (3)

T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007).
[CrossRef]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007).
[CrossRef] [PubMed]

V. Mico, J. García, C. Ferreira, D. Sylman, and Z. Zalevsky, “Spatial information transmission using axial temporal coherence coding,” Opt. Lett. 32, 736-738 (2007).
[CrossRef] [PubMed]

2006 (7)

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190(2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

A. Stern and B. Javidi, “Improved-resolution digital holography using the generalized sampling theorem for locally band-limited fields,” J. Opt. Soc. Am. A 23, 1227-1235 (2006).
[CrossRef]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31, 2759-2761 (2006).
[CrossRef] [PubMed]

M. M. Hossain, D. S. Mehta, and C. Shakher, “Refractive index determination: an application of lensless Fourier digital holography,” Opt. Eng. 45, 106203-106207 (2006).
[CrossRef]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013(2006).
[CrossRef] [PubMed]

2005 (5)

2003 (1)

2002 (3)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
[CrossRef] [PubMed]

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

G. Zigelman, R. Kimmel, and N. Kiryati, “Texure mapping using surface flattening via multi-dimensional scaling,” IEEE Trans. Vis. Comput. Graph. 8, 198-207 (2002).
[CrossRef]

2001 (1)

G. Pedrini and S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik (Jena) 112, 427-432 (2001).
[CrossRef]

1999 (4)

1997 (3)

R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56(1997).
[CrossRef]

E. N. Leith, “Overview of the development of holography” J. Imaging Sci. Technol. 41, 201-204 (1997).

I. Yamaguchi and T. Zhang, “Phase shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

1996 (1)

1994 (1)

1993 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

1990 (1)

B. K. P. Horn, “Height and gradient from shading,” Int. J. Comput. Vis. 5, 37-76 (1990).
[CrossRef]

1988 (4)

A. M. Bruckstein, “On shape from shading,” Comput. Vis. Graph. Image Process. 44, 139-154 (1988).
[CrossRef]

M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
[CrossRef]

P. Besl, “Active optical range imaging sensors,” Mach. Vision Applications 1, 127-152 (1988).
[CrossRef]

H. Stark and H. Peng, “Shape estimation in computer tomography from minimal data,” J. Opt. Soc. Am. A 5, 331-337(1988).
[CrossRef] [PubMed]

1976 (1)

1974 (1)

1967 (1)

R. V. Pole, “3-D imaging and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20-22 (1967).
[CrossRef]

1964 (1)

Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave fields of its scattered radiation,” Opt. Spectrosc. 15, 279-284 (1964).

1962 (1)

1949 (1)

D. Gabor, “Microscopy by reconstructed wave fronts,” Proc. R. Soc. London, Ser. A 197, 454-487 (1949).
[CrossRef]

Asada, M.

M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
[CrossRef]

M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp.1162-1164.

Aspert, N.

Badizadegan, K.

Besl, P.

P. Besl, “Active optical range imaging sensors,” Mach. Vision Applications 1, 127-152 (1988).
[CrossRef]

Bevilacqua, F.

Bobick, A. F.

Y. G. Leclerc and A. F. Bobick, “The direct computation of height from shading,” in IEEE Conference on Computer Vision & Pattern Recognition (IEEE, 1991), pp. 552-558.

Bourquin, S.

Brangaccio, D. J.

Bredebusch, I.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007).
[CrossRef] [PubMed]

Bruckstein, A. M.

R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56(1997).
[CrossRef]

A. M. Bruckstein, “On shape from shading,” Comput. Vis. Graph. Image Process. 44, 139-154 (1988).
[CrossRef]

Bruning, J. H.

Campos, J.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Charrière, F.

Choi, W.

Colomb, T.

Coppola, G.

Cuche, E.

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190(2006).
[CrossRef]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006).
[CrossRef] [PubMed]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806-1812 (2005).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2005).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
[CrossRef]

Curless, B.

L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” presented at the 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Padova, Italy, July, 2002.

D. Mitchell, E. A.

Dasari, R. R.

De Nicola, S.

Denisyuk, Y. N.

Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave fields of its scattered radiation,” Opt. Spectrosc. 15, 279-284 (1964).

Depeursinge, C.

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190(2006).
[CrossRef]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013(2006).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2005).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
[CrossRef]

Depeursinge, C. D.

Domschke, W.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007).
[CrossRef] [PubMed]

Dorsch, R. G.

Dresel, T.

Emery, Y.

Fang-Yen, C.

Feld, M. S.

Ferraro, P.

Ferreira, C.

Finizio, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gabor, D.

D. Gabor, “Microscopy by reconstructed wave fronts,” Proc. R. Soc. London, Ser. A 197, 454-487 (1949).
[CrossRef]

Gallagher, J. E.

García, J.

Garcia-Sucerquia, J.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Grilli, S.

Hausler, G.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Heger, T. J.

Herriot, D. R.

Herrmann, J. M.

Horn, B. K. P.

B. K. P. Horn, “Height and gradient from shading,” Int. J. Comput. Vis. 5, 37-76 (1990).
[CrossRef]

Horn, E.

E. Horn and N. Kiryati, “Toward optimal structured light patterns,” presented at the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, Canada, May 1997.

Hossain, M. M.

M. M. Hossain, D. S. Mehta, and C. Shakher, “Refractive index determination: an application of lensless Fourier digital holography,” Opt. Eng. 45, 106203-106207 (2006).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Ichikawa, H.

M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
[CrossRef]

M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp.1162-1164.

Iemmi, C.

Ikeda, T.

Ishimaru, I.

T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007).
[CrossRef]

Javidi, B.

Jericho, M. H.

Jericho, S. K.

Juptner, W. P. O.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Kemper, B.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008).
[CrossRef] [PubMed]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007).
[CrossRef] [PubMed]

Kim, M.

Kimmel, R.

G. Zigelman, R. Kimmel, and N. Kiryati, “Texure mapping using surface flattening via multi-dimensional scaling,” IEEE Trans. Vis. Comput. Graph. 8, 198-207 (2002).
[CrossRef]

R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56(1997).
[CrossRef]

Kiryati, N.

G. Zigelman, R. Kimmel, and N. Kiryati, “Texure mapping using surface flattening via multi-dimensional scaling,” IEEE Trans. Vis. Comput. Graph. 8, 198-207 (2002).
[CrossRef]

R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56(1997).
[CrossRef]

E. Horn and N. Kiryati, “Toward optimal structured light patterns,” presented at the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, Canada, May 1997.

Klages, P.

Kondo, M.

T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007).
[CrossRef]

Koninckx, T. P.

T. P. Koninckx and L. Van Gool, “Efficient, active 3D acquisition, based on a pattern-specific snake,” in (DAGM 2002) Pattern Recognition, Vol. 2449 of Lecture Notes in Computer Science, L.Van Gool, ed. (Springer, 2002), pp. 557-565.
[CrossRef]

Kosmeier, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007).
[CrossRef] [PubMed]

Kreuzer, H. J.

Kuehn, J.

Kühn, J.

Kuriyama, S.

T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007).
[CrossRef]

Langehanenberg, P.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007).
[CrossRef] [PubMed]

Leclerc, Y. G.

Y. G. Leclerc and A. F. Bobick, “The direct computation of height from shading,” in IEEE Conference on Computer Vision & Pattern Recognition (IEEE, 1991), pp. 552-558.

Leith, E. N.

E. N. Leith, “Overview of the development of holography” J. Imaging Sci. Technol. 41, 201-204 (1997).

E. N. Leith and J. Upatnieks, “Wavefront reconstruction and communication theory,” J. Opt. Soc. Am. 52, 1123-1130(1962).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Lo, C. -M.

Lue, N.

Magistretti, P.

Magistretti, P. J.

Magro, C.

Mann, C.

Marian, A.

Marquet, P.

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006).
[CrossRef] [PubMed]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190(2006).
[CrossRef]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005-7013(2006).
[CrossRef] [PubMed]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806-1812 (2005).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

Masaki, T.

T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007).
[CrossRef]

Massatsch, P.

Mehta, D. S.

M. M. Hossain, D. S. Mehta, and C. Shakher, “Refractive index determination: an application of lensless Fourier digital holography,” Opt. Eng. 45, 106203-106207 (2006).
[CrossRef]

Meinertzhagen, I. A.

Mico, V.

Montfort, F.

Moreno, A.

Pavillon, N.

Pedrini, G.

G. Pedrini and S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik (Jena) 112, 427-432 (2001).
[CrossRef]

Peng, H.

Pierattini, G.

Pole, R. V.

R. V. Pole, “3-D imaging and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20-22 (1967).
[CrossRef]

Popescu, G.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Rappaz, B.

Ritter, D.

Rivlin, E.

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781 (2005 ).

Rosen, J.

Rosenfeld, D. P.

Sawatari, T.

Sazbon, D.

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781 (2005 ).

Schedin, S.

G. Pedrini and S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik (Jena) 112, 427-432 (2001).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Schnekenburger, J.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Seitz, S. M.

L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” presented at the 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Padova, Italy, July, 2002.

Shah, M.

R. Zhang and M. Shah, “Shape from intensity gradient,” IEEE Trans. Syst. Man Cybern., Part A Syst. Humans 29, 318(1999).
[CrossRef]

Shakher, C.

M. M. Hossain, D. S. Mehta, and C. Shakher, “Refractive index determination: an application of lensless Fourier digital holography,” Opt. Eng. 45, 106203-106207 (2006).
[CrossRef]

Stark, H.

Stern, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Sylman, D.

Takegawa, K.

T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007).
[CrossRef]

Tanaka, N.

T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007).
[CrossRef]

Tjuji, S.

M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp.1162-1164.

Tsuji, S.

M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
[CrossRef]

Upatnieks, J.

Van Gool, L.

T. P. Koninckx and L. Van Gool, “Efficient, active 3D acquisition, based on a pattern-specific snake,” in (DAGM 2002) Pattern Recognition, Vol. 2449 of Lecture Notes in Computer Science, L.Van Gool, ed. (Springer, 2002), pp. 557-565.
[CrossRef]

Venzke, H.

von Bally, G.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008).
[CrossRef] [PubMed]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007).
[CrossRef] [PubMed]

Wahl, F. M.

S. Winkelbach and F. M. Wahl, “Shape from single stripe pattern illumination,” in (DAGM 2002) Pattern Recognition, Vol. 2449 of Lecture Notes in Computer Science, L.Van Gool, ed. (Springer, 2002), pp. 240-247.
[CrossRef]

White, A. D.

Winkelbach, S.

S. Winkelbach and F. M. Wahl, “Shape from single stripe pattern illumination,” in (DAGM 2002) Pattern Recognition, Vol. 2449 of Lecture Notes in Computer Science, L.Van Gool, ed. (Springer, 2002), pp. 240-247.
[CrossRef]

Xu, W.

Yamaguchi, I.

Yariv, A.

Yasokawa, T.

T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007).
[CrossRef]

Yu, L.

Zalevsky, Z.

V. Mico, J. García, C. Ferreira, D. Sylman, and Z. Zalevsky, “Spatial information transmission using axial temporal coherence coding,” Opt. Lett. 32, 736-738 (2007).
[CrossRef] [PubMed]

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781 (2005 ).

Zhang, L.

L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” presented at the 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Padova, Italy, July, 2002.

Zhang, R.

R. Zhang and M. Shah, “Shape from intensity gradient,” IEEE Trans. Syst. Man Cybern., Part A Syst. Humans 29, 318(1999).
[CrossRef]

Zhang, T.

Zigelman, G.

G. Zigelman, R. Kimmel, and N. Kiryati, “Texure mapping using surface flattening via multi-dimensional scaling,” IEEE Trans. Vis. Comput. Graph. 8, 198-207 (2002).
[CrossRef]

Appl. Opt. (11)

T. Sawatari,, “Real-time noncontacting distance measurement using optical triangulation,” Appl. Opt. 15, 2821-2827(1976).
[CrossRef] [PubMed]

G. Hausler and D. Ritter, “Parallel three-dimensional sensing by color-coded triangulation,” Appl. Opt. 32, 7164-7170(1993).
[CrossRef] [PubMed]

R. G. Dorsch, G. Hausler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306-1312 (1994).
[CrossRef] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
[CrossRef] [PubMed]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

J. H. Bruning, D. R. Herriot, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693-2703 (1974).
[CrossRef] [PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008).
[CrossRef] [PubMed]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806-1812 (2005).
[CrossRef] [PubMed]

T. Dresel, G. Hausler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919-925 (1992).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. V. Pole, “3-D imaging and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20-22 (1967).
[CrossRef]

Comput. Vis. Graph. Image Process. (1)

A. M. Bruckstein, “On shape from shading,” Comput. Vis. Graph. Image Process. 44, 139-154 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
[CrossRef]

IEEE Trans. Syst. Man Cybern., Part A Syst. Humans (1)

R. Zhang and M. Shah, “Shape from intensity gradient,” IEEE Trans. Syst. Man Cybern., Part A Syst. Humans 29, 318(1999).
[CrossRef]

IEEE Trans. Vis. Comput. Graph. (1)

G. Zigelman, R. Kimmel, and N. Kiryati, “Texure mapping using surface flattening via multi-dimensional scaling,” IEEE Trans. Vis. Comput. Graph. 8, 198-207 (2002).
[CrossRef]

Int. J. Comput. Vis. (2)

B. K. P. Horn, “Height and gradient from shading,” Int. J. Comput. Vis. 5, 37-76 (1990).
[CrossRef]

R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56(1997).
[CrossRef]

J Biomed. Opt. (1)

B. Kemper, S. Kosmeier, P. Langehanenberg, G. Von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determoination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J Biomed. Opt. 12, 054009 (2007).
[CrossRef] [PubMed]

J. Imaging Sci. Technol. (1)

E. N. Leith, “Overview of the development of holography” J. Imaging Sci. Technol. 41, 201-204 (1997).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Mach. Vision Applications (1)

P. Besl, “Active optical range imaging sensors,” Mach. Vision Applications 1, 127-152 (1988).
[CrossRef]

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Opt. Eng. (1)

M. M. Hossain, D. S. Mehta, and C. Shakher, “Refractive index determination: an application of lensless Fourier digital holography,” Opt. Eng. 45, 106203-106207 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Opt. Rev. (1)

T. Yasokawa, I. Ishimaru, M. Kondo, S. Kuriyama, T. Masaki, K. Takegawa, and N. Tanaka, “A method for measuring the three-dimensional refractive index distortion of single cell using proximal two-beam optical tweezers and a phase shifting Mach-Zehnder interferometer,” Opt. Rev. 14, 161-164(2007).
[CrossRef]

Opt. Spectrosc. (1)

Y. N. Denisyuk, “On the reproduction of the optical properties of an object by the wave fields of its scattered radiation,” Opt. Spectrosc. 15, 279-284 (1964).

Optik (Jena) (1)

G. Pedrini and S. Schedin, “Short coherence digital holography for 3D microscopy,” Optik (Jena) 112, 427-432 (2001).
[CrossRef]

Pattern Recogn. Lett. (1)

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781 (2005 ).

Proc. R. Soc. London, Ser. A (1)

D. Gabor, “Microscopy by reconstructed wave fronts,” Proc. R. Soc. London, Ser. A 197, 454-487 (1949).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[CrossRef] [PubMed]

Other (7)

E. Horn and N. Kiryati, “Toward optimal structured light patterns,” presented at the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, Canada, May 1997.

L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” presented at the 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Padova, Italy, July, 2002.

Y. G. Leclerc and A. F. Bobick, “The direct computation of height from shading,” in IEEE Conference on Computer Vision & Pattern Recognition (IEEE, 1991), pp. 552-558.

“Height recovery from intensity gradients,” in IEEE Conference on Computer Vision & Pattern Recognition (IEEE, 1994), pp. 508-513 .

S. Winkelbach and F. M. Wahl, “Shape from single stripe pattern illumination,” in (DAGM 2002) Pattern Recognition, Vol. 2449 of Lecture Notes in Computer Science, L.Van Gool, ed. (Springer, 2002), pp. 240-247.
[CrossRef]

T. P. Koninckx and L. Van Gool, “Efficient, active 3D acquisition, based on a pattern-specific snake,” in (DAGM 2002) Pattern Recognition, Vol. 2449 of Lecture Notes in Computer Science, L.Van Gool, ed. (Springer, 2002), pp. 557-565.
[CrossRef]

M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp.1162-1164.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of the projections through the sample. The angular difference should not be too large such that the two reconstructed patterns will not be shifted more than a pixel.

Fig. 2
Fig. 2

One to one mapping between various heights of the profile d ( x ) and the readout phases a ( x ) and b ( x ) .

Fig. 3
Fig. 3

Experimental setup for the partial coherence experiment. B.S, beam splitter.

Fig. 4
Fig. 4

Experimental mapping of the contrast chart versus the axial shift of one of the mirrors. (a) and (b) are for two different alignments. (c) Fringes and their corresponding Radon transform.

Fig. 5
Fig. 5

Image of the object used for the partial coherence experiment and the obtained interference pattern with the extracted local contrasts. (a)  Two silicon wafers positioned on a mirror. (b). Two silicon wafers positioned on top of a third silicon wafer.

Fig. 6
Fig. 6

Experimental setup for the profile extraction concept based upon multiple angle projection.

Fig. 7
Fig. 7

Experimental reconstruction using an Alpha-Step profile meter. Each pixel is 0.8 μm .

Fig. 8
Fig. 8

Experimental reconstruction. (a) Phase reconstruction for two projection angles that were separated by 1 degree. (b) Profile reconstruction. Each pixel is the pixel of the camera that was 6.7 μm . The alleviation thickness is in meters.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E t o t ( x , t ) = A 1 exp ( i ϕ 1 ( t ) ) exp ( 2 π i sin θ λ x ) + A 2 exp ( i ϕ 2 ( t ) ) exp ( 2 π i sin θ λ x ) ,
I t o t ( x ) = E t o t ( x , t ) E t o t * ( x , t ) = A 1 2 + A 2 2 + 2 A 1 A 2 cos ( ϕ 1 ( t ) ϕ 2 ( t ) ) · cos ( 4 π sin θ λ x ) ,
δ z L sin θ 2 b ,
δ x z = δ x 2 + ( λ Z / ( 2 π · δ x ) ) 2 ,
Z 2 π · δ x 2 λ ,
{ 2 π n d ( x ) λ cos θ 1 } mod { 2 π } = a ( x ) , { 2 π n d ( x ) λ cos θ 2 } mod { 2 π } = b ( x ) ,
C = I max I min I max + I min = 2 | r 1 r 2 | | r 1 | 2 + | r 2 | 2 ,
| r | = | n 1 n 2 n 1 + n 2 | .

Metrics