Abstract

Focus analysis techniques from computer vision are applied to digital holography to determine the depth (range) of multiple objects and their surfaces from a single hologram capture. With this method the depths of objects can be determined from a single hologram capture without the need for manual focusing and without prior information on object location. Variance and the Laplacian of Gaussian are analyzed as focus measures, and techniques are proposed for focus plane determination from the focus measure curves. The algorithm is described in detail and demonstrated through simulation and optical experiment.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast focus estimation using frequency analysis in digital holography

Seungtaik Oh, Chi-Young Hwang, Il Kwon Jeong, Sung-Keun Lee, and Jae-Hyeung Park
Opt. Express 22(23) 28926-28933 (2014)

Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography

Wu Yingchun, Wu Xuecheng, Yang Jing, Wang Zhihua, Gao Xiang, Zhou Binwu, Chen Linghong, Qiu Kunzan, Gérard Gréhan, and Cen Kefa
Appl. Opt. 53(4) 556-564 (2014)

Extended focused imaging for digital holograms of macroscopic three-dimensional objects

Conor P. McElhinney, Bryan M. Hennelly, and Thomas J. Naughton
Appl. Opt. 47(19) D71-D79 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription