Abstract

Speckle-based interferometric techniques allow assessing the whole-field deformation induced on a specimen due to the application of load. These high sensitivity optical techniques yield fringe images generated by subtracting speckle patterns captured while the specimen undergoes deformation. The quality of the fringes, and in turn the accuracy of the deformation measurements, strongly depends on the speckle correlation. Specimen rigid body motion leads to speckle decorrelation that, in general, cannot be effectively counteracted by applying a global translation to the involved speckle patterns. In this paper, we propose a recorrelation procedure based on the application of locally evaluated translations. The proposed procedure implies dividing the field into several regions, applying a local translation, and calculating, in every region, the signal-to-noise ratio (SNR). Since the latter is a correlation indicator (the noise increases with the decorrelation) we argue that the proper translation is that which maximizes the locally evaluated SNR. The search of the proper local translations is, of course, an interactive process that can be facilitated by using a SNR optimization algorithm. The performance of the proposed recorrelation procedure was tested on two examples. First, the SNR optimization algorithm was applied to fringe images obtained by subtracting simulated speckle patterns. Next, it was applied to fringe images obtained by using a shearography optical setup from a specimen subjected to mechanical deformation. Our results show that the proposed SNR optimization method can significantly improve the reliability of measurements performed by using speckle-based techniques.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Brunet, S. Touchal, and F. Morestin, “Numerical and experimental analysis of necking in 3D. Sheet forming processes using damage variable,” in Advanced Methods in Materials Processing Defects, M. Predeleanu and P. Gilormini, eds. (Elsevier, 1997), pp. 205-214.
    [CrossRef]
  2. J. Rethore, S. Roux, and F. Hild, “Noise-robust stress intensity factor determination from kinematic field measurements,” in Engineering Fracture Mechanics (Science Direct, 2007).
  3. H. A. Aebischer and S. Waldner, “Strain distributions made visible with image-shearing speckle pattern interferometry,” Opt. Lasers Eng. 26407-420 (1997).
    [CrossRef]
  4. J. R. Lee, J. Molimard, A. Vautrin, and Y. Surrel, “Digital phase-shifting grating shearography for experimental analysis of fabric composites under tension,” Composites Part A 35, 849-859 (2004).
    [CrossRef]
  5. J. Molimard, D. Bounda, and A. Vautrin, “Quantitative strain and slope evaluation on a double lap joint tensile test using ESPSI,” Proc. SPIE 634163412R-1 (2006).
  6. P. K. Rastogi, P. Jacquot, and L. Pflug, “Holographic interferometry at LSA: Some selected examples of its application,” Opt. Lasers Eng. 1367-77 (1990).
    [CrossRef]
  7. R. R. Cordero and F. Labbe, “Monitoring the strain-rate progression of an aluminium sample undergoing tensile deformation by electronic speckle-pattern interferometry (ESPI),” J. Phys. D 39, 2419-2426 (2006).
    [CrossRef]
  8. A. Martinez, J. A. Rayas, R. R. Cordero, and K. Genovese, “Analysis of optical configurations for electronic speckle-pattern interferometry (ESPI),” Opt. Lasers Eng. 46, 48-54 (2008).
    [CrossRef]
  9. D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994).
    [CrossRef]
  10. B. Han, D. Post, and P. Ifju, “Moiré interferometry for engineering mechanics: current practices and future developments,” J. Strain Anal. 36, 101-117 (2001).
    [CrossRef]
  11. R. R. Cordero, M. François, I. Lira, and C. Vial-Edwards, “Whole-Field Analysis of Uniaxial Tensile Tests by Moiré Interferometry,” Opt. Lasers Eng. 43, 919-936 (2005).
    [CrossRef]
  12. R. Cordero, A. Martínez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun. 241, 279-292(2004).
    [CrossRef]
  13. A. Martínez, R. Cordero, J. A. Rayas, H. J. Puga, and R. Rodríguez-Vera, “Uncertainty analysis of displacement measured by in-plane ESPI with spherical wavefronts,” Appl. Opt. 44, 1141-1149 (2005).
    [CrossRef] [PubMed]
  14. R. Cordero and F. Labbé, “Uncertainty evaluation of out-of-plane displacements measured by electronic speckle-pattern interferometry (ESPI),” Meas. Sci. Technol. 16, 2365-2374(2005).
    [CrossRef]
  15. R. Cordero and F. Labbé, “Uncertainty evaluation of displacement gradients measured by electronic speckle pattern shearing interferometry (ESPSI),” Meas. Sci. Technol. 161315-1321 (2005).
    [CrossRef]
  16. G. Cloud, Optical Methods in Engineering Analysis (Cambridge University Press, 1995).
    [CrossRef]
  17. K. Creath, “Phase measurement interferometry techniques,” Prog. Opt. 26, 350-393 (1998).
  18. H. P. Stahl, “Review of phase-measuring interferometry,” Proc SPIE 1332, 704-719 (1991).
    [CrossRef]
  19. H. J. Tiziani, “Optical methods for precision measurements,” Opt. Quantum Electron. 21253-282 (1989).
    [CrossRef]
  20. P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du bureau international des poids et mesures,” Metrologia 2, 13-23 (1996).
    [CrossRef]
  21. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources” Appl. Opt. 22, 3421 (1983).
    [CrossRef] [PubMed]
  22. J. Novak, “Five-step phase-shifting algorithms with unknown values of phase shift,” Optik (Jena) 114, 63-68 (2003).
    [CrossRef]
  23. J. M. Huntley, “Automated analysis of speckle interferograms,” in ,i>Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, 2001).
  24. Y. Surrel, “Phase stepping: a new self-calibrating algorithm,” Appl. Opt. 32, 3598-3600 (1993).
    [CrossRef] [PubMed]
  25. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 3551 (1996).
    [CrossRef] [PubMed]
  26. A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Self-calibrating algorithm for three-sample phase-shift interferometry by contrast levelling,” Meas. Sci. Technol. 9744-750(1998).
    [CrossRef]
  27. R. R. Cordero and I. Lira, “Uncertainty analysis of displacements measured by phase-shifting moiré interferometry,” Opt. Commun. 237, 25-36 (2004).
    [CrossRef]
  28. P. J. de Groot and L. L. Deck, “Numerical simulations of vibration in phase-shifting interferometry,” Appl. Opt. 35, 2172-2178 (1996).
    [CrossRef] [PubMed]
  29. J. M. Huntley, “Suppression of phase errors from vibration in phase-shifting interferometry,” J. Opt. Soc. Am. A 15, 2233-2241 (1998).
    [CrossRef]
  30. B. Zhao, “Effect of intensity-correlated error due to quantization and noise on phase-shifting method,” Opt. Lasers Eng. 28, 199-211 (1997).
    [CrossRef]
  31. B. Zhao and Y. Surrel, “Effect of quantization error on the computed phase of phase-shifting measurements,” Appl. Opt. 36, 2070-2075 (1997).
    [CrossRef] [PubMed]
  32. Y. Surrel, “Additive noise effect in digital phase detection,” Appl. Opt. 36, 271-276 (1997).
    [CrossRef] [PubMed]
  33. R. R. Cordero, J. Molimard, A. Martınez, and F. Labbe, “Uncertainty analysis of temporal phase-stepping algorithms for interferometry,” Opt. Commun. 275144-155 (2007).
    [CrossRef]
  34. L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng. 34, 55-65 (2000).
    [CrossRef]
  35. A. Davila, J. M. Huntley, G. H. Kaufmann, and D. Kerr, “High-speed dynamic speckle interferometry: phase errors due to intensity, velocity, and speckle decorrelation,” Appl. Opt. , 44, 3954-3962 (2005).
    [CrossRef] [PubMed]
  36. Y. Y. Hung, J. Q. Wang, and J. D. Hovanesian, “Technique for compensating excessive rigid body motion in nondestructive testing of large structures using shearography,” Opt. Lasers Eng. 26, 249-250 (1997).
    [CrossRef]
  37. R. A. Martınez-Celorio, B. Barrientos, F. J. Sanchez-Marın, L. M. Lopez, and J. A. Rayas, “Out-of-plane displacement measurement by electronic speckle pattern interferometry in presence of large in-plane displacement,” Opt. Commun. 208, 17-24 (2002).
    [CrossRef]
  38. S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6341, 634136-1 (2006).
  39. Y. Surrel, “Moiré and grid methods in optics,” Proc. SPIE 2342, 213-220 (1994).

2008

A. Martinez, J. A. Rayas, R. R. Cordero, and K. Genovese, “Analysis of optical configurations for electronic speckle-pattern interferometry (ESPI),” Opt. Lasers Eng. 46, 48-54 (2008).
[CrossRef]

2007

R. R. Cordero, J. Molimard, A. Martınez, and F. Labbe, “Uncertainty analysis of temporal phase-stepping algorithms for interferometry,” Opt. Commun. 275144-155 (2007).
[CrossRef]

2006

S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6341, 634136-1 (2006).

R. R. Cordero and F. Labbe, “Monitoring the strain-rate progression of an aluminium sample undergoing tensile deformation by electronic speckle-pattern interferometry (ESPI),” J. Phys. D 39, 2419-2426 (2006).
[CrossRef]

J. Molimard, D. Bounda, and A. Vautrin, “Quantitative strain and slope evaluation on a double lap joint tensile test using ESPSI,” Proc. SPIE 634163412R-1 (2006).

2005

R. R. Cordero, M. François, I. Lira, and C. Vial-Edwards, “Whole-Field Analysis of Uniaxial Tensile Tests by Moiré Interferometry,” Opt. Lasers Eng. 43, 919-936 (2005).
[CrossRef]

A. Martínez, R. Cordero, J. A. Rayas, H. J. Puga, and R. Rodríguez-Vera, “Uncertainty analysis of displacement measured by in-plane ESPI with spherical wavefronts,” Appl. Opt. 44, 1141-1149 (2005).
[CrossRef] [PubMed]

R. Cordero and F. Labbé, “Uncertainty evaluation of out-of-plane displacements measured by electronic speckle-pattern interferometry (ESPI),” Meas. Sci. Technol. 16, 2365-2374(2005).
[CrossRef]

R. Cordero and F. Labbé, “Uncertainty evaluation of displacement gradients measured by electronic speckle pattern shearing interferometry (ESPSI),” Meas. Sci. Technol. 161315-1321 (2005).
[CrossRef]

A. Davila, J. M. Huntley, G. H. Kaufmann, and D. Kerr, “High-speed dynamic speckle interferometry: phase errors due to intensity, velocity, and speckle decorrelation,” Appl. Opt. , 44, 3954-3962 (2005).
[CrossRef] [PubMed]

2004

R. R. Cordero and I. Lira, “Uncertainty analysis of displacements measured by phase-shifting moiré interferometry,” Opt. Commun. 237, 25-36 (2004).
[CrossRef]

R. Cordero, A. Martínez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun. 241, 279-292(2004).
[CrossRef]

J. R. Lee, J. Molimard, A. Vautrin, and Y. Surrel, “Digital phase-shifting grating shearography for experimental analysis of fabric composites under tension,” Composites Part A 35, 849-859 (2004).
[CrossRef]

2003

J. Novak, “Five-step phase-shifting algorithms with unknown values of phase shift,” Optik (Jena) 114, 63-68 (2003).
[CrossRef]

2002

R. A. Martınez-Celorio, B. Barrientos, F. J. Sanchez-Marın, L. M. Lopez, and J. A. Rayas, “Out-of-plane displacement measurement by electronic speckle pattern interferometry in presence of large in-plane displacement,” Opt. Commun. 208, 17-24 (2002).
[CrossRef]

2001

B. Han, D. Post, and P. Ifju, “Moiré interferometry for engineering mechanics: current practices and future developments,” J. Strain Anal. 36, 101-117 (2001).
[CrossRef]

2000

L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng. 34, 55-65 (2000).
[CrossRef]

1998

A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Self-calibrating algorithm for three-sample phase-shift interferometry by contrast levelling,” Meas. Sci. Technol. 9744-750(1998).
[CrossRef]

J. M. Huntley, “Suppression of phase errors from vibration in phase-shifting interferometry,” J. Opt. Soc. Am. A 15, 2233-2241 (1998).
[CrossRef]

K. Creath, “Phase measurement interferometry techniques,” Prog. Opt. 26, 350-393 (1998).

1997

H. A. Aebischer and S. Waldner, “Strain distributions made visible with image-shearing speckle pattern interferometry,” Opt. Lasers Eng. 26407-420 (1997).
[CrossRef]

B. Zhao, “Effect of intensity-correlated error due to quantization and noise on phase-shifting method,” Opt. Lasers Eng. 28, 199-211 (1997).
[CrossRef]

B. Zhao and Y. Surrel, “Effect of quantization error on the computed phase of phase-shifting measurements,” Appl. Opt. 36, 2070-2075 (1997).
[CrossRef] [PubMed]

Y. Surrel, “Additive noise effect in digital phase detection,” Appl. Opt. 36, 271-276 (1997).
[CrossRef] [PubMed]

Y. Y. Hung, J. Q. Wang, and J. D. Hovanesian, “Technique for compensating excessive rigid body motion in nondestructive testing of large structures using shearography,” Opt. Lasers Eng. 26, 249-250 (1997).
[CrossRef]

1996

1994

Y. Surrel, “Moiré and grid methods in optics,” Proc. SPIE 2342, 213-220 (1994).

1993

1991

H. P. Stahl, “Review of phase-measuring interferometry,” Proc SPIE 1332, 704-719 (1991).
[CrossRef]

1990

P. K. Rastogi, P. Jacquot, and L. Pflug, “Holographic interferometry at LSA: Some selected examples of its application,” Opt. Lasers Eng. 1367-77 (1990).
[CrossRef]

1989

H. J. Tiziani, “Optical methods for precision measurements,” Opt. Quantum Electron. 21253-282 (1989).
[CrossRef]

1983

Aebischer, H. A.

H. A. Aebischer and S. Waldner, “Strain distributions made visible with image-shearing speckle pattern interferometry,” Opt. Lasers Eng. 26407-420 (1997).
[CrossRef]

Apostol, D.

A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Self-calibrating algorithm for three-sample phase-shift interferometry by contrast levelling,” Meas. Sci. Technol. 9744-750(1998).
[CrossRef]

Barrientos, B.

R. A. Martınez-Celorio, B. Barrientos, F. J. Sanchez-Marın, L. M. Lopez, and J. A. Rayas, “Out-of-plane displacement measurement by electronic speckle pattern interferometry in presence of large in-plane displacement,” Opt. Commun. 208, 17-24 (2002).
[CrossRef]

Bounda, D.

J. Molimard, D. Bounda, and A. Vautrin, “Quantitative strain and slope evaluation on a double lap joint tensile test using ESPSI,” Proc. SPIE 634163412R-1 (2006).

Brunet, M.

M. Brunet, S. Touchal, and F. Morestin, “Numerical and experimental analysis of necking in 3D. Sheet forming processes using damage variable,” in Advanced Methods in Materials Processing Defects, M. Predeleanu and P. Gilormini, eds. (Elsevier, 1997), pp. 205-214.
[CrossRef]

Bruno, L.

L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng. 34, 55-65 (2000).
[CrossRef]

Burow, R.

Carré, P.

P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du bureau international des poids et mesures,” Metrologia 2, 13-23 (1996).
[CrossRef]

Cloud, G.

G. Cloud, Optical Methods in Engineering Analysis (Cambridge University Press, 1995).
[CrossRef]

Cordero, R.

R. Cordero and F. Labbé, “Uncertainty evaluation of out-of-plane displacements measured by electronic speckle-pattern interferometry (ESPI),” Meas. Sci. Technol. 16, 2365-2374(2005).
[CrossRef]

R. Cordero and F. Labbé, “Uncertainty evaluation of displacement gradients measured by electronic speckle pattern shearing interferometry (ESPSI),” Meas. Sci. Technol. 161315-1321 (2005).
[CrossRef]

A. Martínez, R. Cordero, J. A. Rayas, H. J. Puga, and R. Rodríguez-Vera, “Uncertainty analysis of displacement measured by in-plane ESPI with spherical wavefronts,” Appl. Opt. 44, 1141-1149 (2005).
[CrossRef] [PubMed]

R. Cordero, A. Martínez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun. 241, 279-292(2004).
[CrossRef]

Cordero, R. R.

A. Martinez, J. A. Rayas, R. R. Cordero, and K. Genovese, “Analysis of optical configurations for electronic speckle-pattern interferometry (ESPI),” Opt. Lasers Eng. 46, 48-54 (2008).
[CrossRef]

R. R. Cordero, J. Molimard, A. Martınez, and F. Labbe, “Uncertainty analysis of temporal phase-stepping algorithms for interferometry,” Opt. Commun. 275144-155 (2007).
[CrossRef]

R. R. Cordero and F. Labbe, “Monitoring the strain-rate progression of an aluminium sample undergoing tensile deformation by electronic speckle-pattern interferometry (ESPI),” J. Phys. D 39, 2419-2426 (2006).
[CrossRef]

R. R. Cordero, M. François, I. Lira, and C. Vial-Edwards, “Whole-Field Analysis of Uniaxial Tensile Tests by Moiré Interferometry,” Opt. Lasers Eng. 43, 919-936 (2005).
[CrossRef]

R. R. Cordero and I. Lira, “Uncertainty analysis of displacements measured by phase-shifting moiré interferometry,” Opt. Commun. 237, 25-36 (2004).
[CrossRef]

Creath, K.

K. Creath, “Phase measurement interferometry techniques,” Prog. Opt. 26, 350-393 (1998).

Damian, V.

A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Self-calibrating algorithm for three-sample phase-shift interferometry by contrast levelling,” Meas. Sci. Technol. 9744-750(1998).
[CrossRef]

Davila, A.

de Groot, P. J.

Deck, L. L.

Dobroiu, A.

A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Self-calibrating algorithm for three-sample phase-shift interferometry by contrast levelling,” Meas. Sci. Technol. 9744-750(1998).
[CrossRef]

Elssner, K. E.

Equis, S.

S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6341, 634136-1 (2006).

François, M.

R. R. Cordero, M. François, I. Lira, and C. Vial-Edwards, “Whole-Field Analysis of Uniaxial Tensile Tests by Moiré Interferometry,” Opt. Lasers Eng. 43, 919-936 (2005).
[CrossRef]

Genovese, K.

A. Martinez, J. A. Rayas, R. R. Cordero, and K. Genovese, “Analysis of optical configurations for electronic speckle-pattern interferometry (ESPI),” Opt. Lasers Eng. 46, 48-54 (2008).
[CrossRef]

Grzanna, J.

Han, B.

B. Han, D. Post, and P. Ifju, “Moiré interferometry for engineering mechanics: current practices and future developments,” J. Strain Anal. 36, 101-117 (2001).
[CrossRef]

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994).
[CrossRef]

Hild, F.

J. Rethore, S. Roux, and F. Hild, “Noise-robust stress intensity factor determination from kinematic field measurements,” in Engineering Fracture Mechanics (Science Direct, 2007).

Hovanesian, J. D.

Y. Y. Hung, J. Q. Wang, and J. D. Hovanesian, “Technique for compensating excessive rigid body motion in nondestructive testing of large structures using shearography,” Opt. Lasers Eng. 26, 249-250 (1997).
[CrossRef]

Hung, Y. Y.

Y. Y. Hung, J. Q. Wang, and J. D. Hovanesian, “Technique for compensating excessive rigid body motion in nondestructive testing of large structures using shearography,” Opt. Lasers Eng. 26, 249-250 (1997).
[CrossRef]

Huntley, J. M.

Ifju, P.

B. Han, D. Post, and P. Ifju, “Moiré interferometry for engineering mechanics: current practices and future developments,” J. Strain Anal. 36, 101-117 (2001).
[CrossRef]

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994).
[CrossRef]

Jacquot, P.

S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6341, 634136-1 (2006).

P. K. Rastogi, P. Jacquot, and L. Pflug, “Holographic interferometry at LSA: Some selected examples of its application,” Opt. Lasers Eng. 1367-77 (1990).
[CrossRef]

Kaufmann, G. H.

Kerr, D.

Labbe, F.

R. R. Cordero, J. Molimard, A. Martınez, and F. Labbe, “Uncertainty analysis of temporal phase-stepping algorithms for interferometry,” Opt. Commun. 275144-155 (2007).
[CrossRef]

R. R. Cordero and F. Labbe, “Monitoring the strain-rate progression of an aluminium sample undergoing tensile deformation by electronic speckle-pattern interferometry (ESPI),” J. Phys. D 39, 2419-2426 (2006).
[CrossRef]

Labbé, F.

R. Cordero and F. Labbé, “Uncertainty evaluation of displacement gradients measured by electronic speckle pattern shearing interferometry (ESPSI),” Meas. Sci. Technol. 161315-1321 (2005).
[CrossRef]

R. Cordero and F. Labbé, “Uncertainty evaluation of out-of-plane displacements measured by electronic speckle-pattern interferometry (ESPI),” Meas. Sci. Technol. 16, 2365-2374(2005).
[CrossRef]

Lee, J. R.

J. R. Lee, J. Molimard, A. Vautrin, and Y. Surrel, “Digital phase-shifting grating shearography for experimental analysis of fabric composites under tension,” Composites Part A 35, 849-859 (2004).
[CrossRef]

Lira, I.

R. R. Cordero, M. François, I. Lira, and C. Vial-Edwards, “Whole-Field Analysis of Uniaxial Tensile Tests by Moiré Interferometry,” Opt. Lasers Eng. 43, 919-936 (2005).
[CrossRef]

R. R. Cordero and I. Lira, “Uncertainty analysis of displacements measured by phase-shifting moiré interferometry,” Opt. Commun. 237, 25-36 (2004).
[CrossRef]

Lopez, L. M.

R. A. Martınez-Celorio, B. Barrientos, F. J. Sanchez-Marın, L. M. Lopez, and J. A. Rayas, “Out-of-plane displacement measurement by electronic speckle pattern interferometry in presence of large in-plane displacement,” Opt. Commun. 208, 17-24 (2002).
[CrossRef]

Martinez, A.

A. Martinez, J. A. Rayas, R. R. Cordero, and K. Genovese, “Analysis of optical configurations for electronic speckle-pattern interferometry (ESPI),” Opt. Lasers Eng. 46, 48-54 (2008).
[CrossRef]

R. R. Cordero, J. Molimard, A. Martınez, and F. Labbe, “Uncertainty analysis of temporal phase-stepping algorithms for interferometry,” Opt. Commun. 275144-155 (2007).
[CrossRef]

Martínez, A.

A. Martínez, R. Cordero, J. A. Rayas, H. J. Puga, and R. Rodríguez-Vera, “Uncertainty analysis of displacement measured by in-plane ESPI with spherical wavefronts,” Appl. Opt. 44, 1141-1149 (2005).
[CrossRef] [PubMed]

R. Cordero, A. Martínez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun. 241, 279-292(2004).
[CrossRef]

Martinez-Celorio, R. A.

R. A. Martınez-Celorio, B. Barrientos, F. J. Sanchez-Marın, L. M. Lopez, and J. A. Rayas, “Out-of-plane displacement measurement by electronic speckle pattern interferometry in presence of large in-plane displacement,” Opt. Commun. 208, 17-24 (2002).
[CrossRef]

Merkel, K.

Molimard, J.

R. R. Cordero, J. Molimard, A. Martınez, and F. Labbe, “Uncertainty analysis of temporal phase-stepping algorithms for interferometry,” Opt. Commun. 275144-155 (2007).
[CrossRef]

J. Molimard, D. Bounda, and A. Vautrin, “Quantitative strain and slope evaluation on a double lap joint tensile test using ESPSI,” Proc. SPIE 634163412R-1 (2006).

J. R. Lee, J. Molimard, A. Vautrin, and Y. Surrel, “Digital phase-shifting grating shearography for experimental analysis of fabric composites under tension,” Composites Part A 35, 849-859 (2004).
[CrossRef]

Morestin, F.

M. Brunet, S. Touchal, and F. Morestin, “Numerical and experimental analysis of necking in 3D. Sheet forming processes using damage variable,” in Advanced Methods in Materials Processing Defects, M. Predeleanu and P. Gilormini, eds. (Elsevier, 1997), pp. 205-214.
[CrossRef]

Nascov, V.

A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Self-calibrating algorithm for three-sample phase-shift interferometry by contrast levelling,” Meas. Sci. Technol. 9744-750(1998).
[CrossRef]

Novak, J.

J. Novak, “Five-step phase-shifting algorithms with unknown values of phase shift,” Optik (Jena) 114, 63-68 (2003).
[CrossRef]

Pagnotta, L.

L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng. 34, 55-65 (2000).
[CrossRef]

Pflug, L.

P. K. Rastogi, P. Jacquot, and L. Pflug, “Holographic interferometry at LSA: Some selected examples of its application,” Opt. Lasers Eng. 1367-77 (1990).
[CrossRef]

Poggialini, A.

L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng. 34, 55-65 (2000).
[CrossRef]

Post, D.

B. Han, D. Post, and P. Ifju, “Moiré interferometry for engineering mechanics: current practices and future developments,” J. Strain Anal. 36, 101-117 (2001).
[CrossRef]

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994).
[CrossRef]

Puga, H. J.

Rastogi, P. K.

P. K. Rastogi, P. Jacquot, and L. Pflug, “Holographic interferometry at LSA: Some selected examples of its application,” Opt. Lasers Eng. 1367-77 (1990).
[CrossRef]

Rayas, J. A.

A. Martinez, J. A. Rayas, R. R. Cordero, and K. Genovese, “Analysis of optical configurations for electronic speckle-pattern interferometry (ESPI),” Opt. Lasers Eng. 46, 48-54 (2008).
[CrossRef]

A. Martínez, R. Cordero, J. A. Rayas, H. J. Puga, and R. Rodríguez-Vera, “Uncertainty analysis of displacement measured by in-plane ESPI with spherical wavefronts,” Appl. Opt. 44, 1141-1149 (2005).
[CrossRef] [PubMed]

R. A. Martınez-Celorio, B. Barrientos, F. J. Sanchez-Marın, L. M. Lopez, and J. A. Rayas, “Out-of-plane displacement measurement by electronic speckle pattern interferometry in presence of large in-plane displacement,” Opt. Commun. 208, 17-24 (2002).
[CrossRef]

Rethore, J.

J. Rethore, S. Roux, and F. Hild, “Noise-robust stress intensity factor determination from kinematic field measurements,” in Engineering Fracture Mechanics (Science Direct, 2007).

Rodríguez-Vera, R.

A. Martínez, R. Cordero, J. A. Rayas, H. J. Puga, and R. Rodríguez-Vera, “Uncertainty analysis of displacement measured by in-plane ESPI with spherical wavefronts,” Appl. Opt. 44, 1141-1149 (2005).
[CrossRef] [PubMed]

R. Cordero, A. Martínez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun. 241, 279-292(2004).
[CrossRef]

Roth, P.

R. Cordero, A. Martínez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun. 241, 279-292(2004).
[CrossRef]

Roux, S.

J. Rethore, S. Roux, and F. Hild, “Noise-robust stress intensity factor determination from kinematic field measurements,” in Engineering Fracture Mechanics (Science Direct, 2007).

Sanchez-Marin, F. J.

R. A. Martınez-Celorio, B. Barrientos, F. J. Sanchez-Marın, L. M. Lopez, and J. A. Rayas, “Out-of-plane displacement measurement by electronic speckle pattern interferometry in presence of large in-plane displacement,” Opt. Commun. 208, 17-24 (2002).
[CrossRef]

Schwider, J.

Spolaczyk, R.

Stahl, H. P.

H. P. Stahl, “Review of phase-measuring interferometry,” Proc SPIE 1332, 704-719 (1991).
[CrossRef]

Surrel, Y.

Tiziani, H. J.

H. J. Tiziani, “Optical methods for precision measurements,” Opt. Quantum Electron. 21253-282 (1989).
[CrossRef]

Touchal, S.

M. Brunet, S. Touchal, and F. Morestin, “Numerical and experimental analysis of necking in 3D. Sheet forming processes using damage variable,” in Advanced Methods in Materials Processing Defects, M. Predeleanu and P. Gilormini, eds. (Elsevier, 1997), pp. 205-214.
[CrossRef]

Vautrin, A.

J. Molimard, D. Bounda, and A. Vautrin, “Quantitative strain and slope evaluation on a double lap joint tensile test using ESPSI,” Proc. SPIE 634163412R-1 (2006).

J. R. Lee, J. Molimard, A. Vautrin, and Y. Surrel, “Digital phase-shifting grating shearography for experimental analysis of fabric composites under tension,” Composites Part A 35, 849-859 (2004).
[CrossRef]

Vial-Edwards, C.

R. R. Cordero, M. François, I. Lira, and C. Vial-Edwards, “Whole-Field Analysis of Uniaxial Tensile Tests by Moiré Interferometry,” Opt. Lasers Eng. 43, 919-936 (2005).
[CrossRef]

Waldner, S.

H. A. Aebischer and S. Waldner, “Strain distributions made visible with image-shearing speckle pattern interferometry,” Opt. Lasers Eng. 26407-420 (1997).
[CrossRef]

Wang, J. Q.

Y. Y. Hung, J. Q. Wang, and J. D. Hovanesian, “Technique for compensating excessive rigid body motion in nondestructive testing of large structures using shearography,” Opt. Lasers Eng. 26, 249-250 (1997).
[CrossRef]

Zhao, B.

B. Zhao, “Effect of intensity-correlated error due to quantization and noise on phase-shifting method,” Opt. Lasers Eng. 28, 199-211 (1997).
[CrossRef]

B. Zhao and Y. Surrel, “Effect of quantization error on the computed phase of phase-shifting measurements,” Appl. Opt. 36, 2070-2075 (1997).
[CrossRef] [PubMed]

Appl. Opt.

Composites Part A

J. R. Lee, J. Molimard, A. Vautrin, and Y. Surrel, “Digital phase-shifting grating shearography for experimental analysis of fabric composites under tension,” Composites Part A 35, 849-859 (2004).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

R. R. Cordero and F. Labbe, “Monitoring the strain-rate progression of an aluminium sample undergoing tensile deformation by electronic speckle-pattern interferometry (ESPI),” J. Phys. D 39, 2419-2426 (2006).
[CrossRef]

J. Strain Anal.

B. Han, D. Post, and P. Ifju, “Moiré interferometry for engineering mechanics: current practices and future developments,” J. Strain Anal. 36, 101-117 (2001).
[CrossRef]

Meas. Sci. Technol.

R. Cordero and F. Labbé, “Uncertainty evaluation of out-of-plane displacements measured by electronic speckle-pattern interferometry (ESPI),” Meas. Sci. Technol. 16, 2365-2374(2005).
[CrossRef]

R. Cordero and F. Labbé, “Uncertainty evaluation of displacement gradients measured by electronic speckle pattern shearing interferometry (ESPSI),” Meas. Sci. Technol. 161315-1321 (2005).
[CrossRef]

A. Dobroiu, D. Apostol, V. Nascov, and V. Damian, “Self-calibrating algorithm for three-sample phase-shift interferometry by contrast levelling,” Meas. Sci. Technol. 9744-750(1998).
[CrossRef]

Metrologia

P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du bureau international des poids et mesures,” Metrologia 2, 13-23 (1996).
[CrossRef]

Opt. Commun.

R. A. Martınez-Celorio, B. Barrientos, F. J. Sanchez-Marın, L. M. Lopez, and J. A. Rayas, “Out-of-plane displacement measurement by electronic speckle pattern interferometry in presence of large in-plane displacement,” Opt. Commun. 208, 17-24 (2002).
[CrossRef]

R. R. Cordero and I. Lira, “Uncertainty analysis of displacements measured by phase-shifting moiré interferometry,” Opt. Commun. 237, 25-36 (2004).
[CrossRef]

R. R. Cordero, J. Molimard, A. Martınez, and F. Labbe, “Uncertainty analysis of temporal phase-stepping algorithms for interferometry,” Opt. Commun. 275144-155 (2007).
[CrossRef]

R. Cordero, A. Martínez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun. 241, 279-292(2004).
[CrossRef]

Opt. Lasers Eng.

R. R. Cordero, M. François, I. Lira, and C. Vial-Edwards, “Whole-Field Analysis of Uniaxial Tensile Tests by Moiré Interferometry,” Opt. Lasers Eng. 43, 919-936 (2005).
[CrossRef]

A. Martinez, J. A. Rayas, R. R. Cordero, and K. Genovese, “Analysis of optical configurations for electronic speckle-pattern interferometry (ESPI),” Opt. Lasers Eng. 46, 48-54 (2008).
[CrossRef]

H. A. Aebischer and S. Waldner, “Strain distributions made visible with image-shearing speckle pattern interferometry,” Opt. Lasers Eng. 26407-420 (1997).
[CrossRef]

P. K. Rastogi, P. Jacquot, and L. Pflug, “Holographic interferometry at LSA: Some selected examples of its application,” Opt. Lasers Eng. 1367-77 (1990).
[CrossRef]

L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng. 34, 55-65 (2000).
[CrossRef]

B. Zhao, “Effect of intensity-correlated error due to quantization and noise on phase-shifting method,” Opt. Lasers Eng. 28, 199-211 (1997).
[CrossRef]

Y. Y. Hung, J. Q. Wang, and J. D. Hovanesian, “Technique for compensating excessive rigid body motion in nondestructive testing of large structures using shearography,” Opt. Lasers Eng. 26, 249-250 (1997).
[CrossRef]

Opt. Quantum Electron.

H. J. Tiziani, “Optical methods for precision measurements,” Opt. Quantum Electron. 21253-282 (1989).
[CrossRef]

Optik (Jena)

J. Novak, “Five-step phase-shifting algorithms with unknown values of phase shift,” Optik (Jena) 114, 63-68 (2003).
[CrossRef]

Proc SPIE

H. P. Stahl, “Review of phase-measuring interferometry,” Proc SPIE 1332, 704-719 (1991).
[CrossRef]

Proc. SPIE

J. Molimard, D. Bounda, and A. Vautrin, “Quantitative strain and slope evaluation on a double lap joint tensile test using ESPSI,” Proc. SPIE 634163412R-1 (2006).

S. Equis and P. Jacquot, “Simulation of speckle complex amplitude: advocating the linear model,” Proc. SPIE 6341, 634136-1 (2006).

Y. Surrel, “Moiré and grid methods in optics,” Proc. SPIE 2342, 213-220 (1994).

Prog. Opt.

K. Creath, “Phase measurement interferometry techniques,” Prog. Opt. 26, 350-393 (1998).

Other

G. Cloud, Optical Methods in Engineering Analysis (Cambridge University Press, 1995).
[CrossRef]

M. Brunet, S. Touchal, and F. Morestin, “Numerical and experimental analysis of necking in 3D. Sheet forming processes using damage variable,” in Advanced Methods in Materials Processing Defects, M. Predeleanu and P. Gilormini, eds. (Elsevier, 1997), pp. 205-214.
[CrossRef]

J. Rethore, S. Roux, and F. Hild, “Noise-robust stress intensity factor determination from kinematic field measurements,” in Engineering Fracture Mechanics (Science Direct, 2007).

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994).
[CrossRef]

J. M. Huntley, “Automated analysis of speckle interferograms,” in ,i>Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Flow chart of the proposed recorrelation procedure.

Fig. 2
Fig. 2

Recorrelation procedure performance when the illuminated specimen undergoes only translation.

Fig. 3
Fig. 3

Assuming that the involved specimen was subjected to a 3.10 3 μm / m homogeneous strain: (a) wrapped phase map when no correction against the decorrelation was applied, (b) when a global translation was used to counteract the decorrelation, and (c) when the proposed recorrelation procedure was applied.

Fig. 4
Fig. 4

Assuming that the involved specimen was subjected to a sine-wave strain field: (a) wrapped phase map when no correction against the decorrelation was applied and (b) when the proposed recorrelation procedure was applied.

Fig. 5
Fig. 5

Wrapped phase map obtained by subjecting the specimen to a 100 N load step: (a) when no correction against the decorrelation was applied and (b) when the proposed recorrelation procedure was applied.

Fig. 6
Fig. 6

(a) Strain and (b) wrapped slope computed from phase measurements performed on a fabric specimen subjected to a 100 N load step after applying the recorrelation procedure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

CCP ( i , j ) = I ini ( M ) I fi [ u ( M ) ] I ini ( M ) I fi [ u ( M ) ] .
Δ Φ { i , j } ( δ i , δ j ) = Φ { i + δ i , j + δ j } fin Φ { i , j } ini
SNR { i , j } ( δ i , δ j ) = S ( δ i , δ j ) LF STD ( sin [ Δ Φ { i , j } ( δ i , δ j ) ] HF ) .
Δ Φ ( i , j ) = 4 π λ · sin ( θ ) · δ x · u x + 4 π λ · [ 1 + cos ( θ ) ] · δ x · w x ,

Metrics