Abstract

A temperature sensor was demonstrated and fabricated by coating thermosensitive film around a fiber coupler. Based on the multicladding equivalent method, the coated fiber coupler was simplified to a conventional one. With the high thermo-optical coefficient of organic–inorganic solgel material, a good sensing result was achieved. The range of temperature measured is from 50°C to 100°C. The resonant wavelength has a shift of about 25nm. A sensitivity of 0.17nm/°C is achieved. With the advantages of having a simple structure and being unaffected by the instability of the light source, the proposed fiber coupler temperature sensor will find wide applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Gafsi, P. Lecoy, and A. Malki, “Stress optical fiber sensor using light coupling between two laterally fused multimode optical fibers,” Appl. Opt. 37, 3417-3425 (1998).
    [CrossRef]
  2. H.-y. Bao and T.-y. Wang, “An enhanced fiber-optic temperature sensor for coupler visibility monitoring,” J. Optoelectron. Laser. 16, 1413-1416 (2005).
  3. R. Chen, Y. Liao, and G. Zheng, “A novel acoustic emission fiber optic sensor based on a single mode optical fiber coupler,” Chin. J. Lasers B 10, 195-198 (2001).
  4. R. Chen, Y. Liao, G. T. Zheng, T. Liu, and G. F. Fernando, “Analysis of acousto-optic modulation in optical fiber coupler,” Proc. SPIE 4074, 377-379 (2000).
    [CrossRef]
  5. R. Chen and T. Bradshaw, “Linear location of acoustic emission using a pair of novel fibre optic sensors,” Meas. Sci. Technol. 17, 2313-2318 (2006).
    [CrossRef]
  6. E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett. 81, 1438-1440 (2002).
    [CrossRef]
  7. I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A. 23, 651-658 (2006).
    [CrossRef]
  8. W. K. Burns and M. Abebe, “Coupling model for fused fiber couplers with parabolic taper shape,” Appl. Opt. 26, 4190-4192(1987).
    [CrossRef] [PubMed]
  9. J. Bures and S. Lacroix, and J. Lapierre, “Analyse d'un coupleur bidirectionnel a fibres optiques monomodes fusionnees,” Appl. Opt. 22, 1918-1922 (1983).
    [CrossRef] [PubMed]
  10. Y. Fang, “Equivalent step-index-fiber method for multicladding fibers,” J. Lightwave Technol. 11, 1523-1525 (1993).
    [CrossRef]
  11. Z. Chen, “Study of a dynamic-shape-curve function for a fused tapering optical fiber,” Appl. Opt. 45, 6914-6918 (2006).
    [CrossRef] [PubMed]
  12. F. Pang, X. Han, H. Cai, R. Qu, and J. Fang, “An integrated optical waveguide ring resonator by using sol-gel technology,” Chin. J. Lasers 33 (4), 1-5 (2006).

2006

R. Chen and T. Bradshaw, “Linear location of acoustic emission using a pair of novel fibre optic sensors,” Meas. Sci. Technol. 17, 2313-2318 (2006).
[CrossRef]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A. 23, 651-658 (2006).
[CrossRef]

F. Pang, X. Han, H. Cai, R. Qu, and J. Fang, “An integrated optical waveguide ring resonator by using sol-gel technology,” Chin. J. Lasers 33 (4), 1-5 (2006).

Z. Chen, “Study of a dynamic-shape-curve function for a fused tapering optical fiber,” Appl. Opt. 45, 6914-6918 (2006).
[CrossRef] [PubMed]

2005

H.-y. Bao and T.-y. Wang, “An enhanced fiber-optic temperature sensor for coupler visibility monitoring,” J. Optoelectron. Laser. 16, 1413-1416 (2005).

2002

E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett. 81, 1438-1440 (2002).
[CrossRef]

2001

R. Chen, Y. Liao, and G. Zheng, “A novel acoustic emission fiber optic sensor based on a single mode optical fiber coupler,” Chin. J. Lasers B 10, 195-198 (2001).

2000

R. Chen, Y. Liao, G. T. Zheng, T. Liu, and G. F. Fernando, “Analysis of acousto-optic modulation in optical fiber coupler,” Proc. SPIE 4074, 377-379 (2000).
[CrossRef]

1998

1993

Y. Fang, “Equivalent step-index-fiber method for multicladding fibers,” J. Lightwave Technol. 11, 1523-1525 (1993).
[CrossRef]

1987

1983

Abebe, M.

Arregui, F. J.

I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A. 23, 651-658 (2006).
[CrossRef]

Bae, B.-S.

E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett. 81, 1438-1440 (2002).
[CrossRef]

Bao, H.-y.

H.-y. Bao and T.-y. Wang, “An enhanced fiber-optic temperature sensor for coupler visibility monitoring,” J. Optoelectron. Laser. 16, 1413-1416 (2005).

Bradshaw, T.

R. Chen and T. Bradshaw, “Linear location of acoustic emission using a pair of novel fibre optic sensors,” Meas. Sci. Technol. 17, 2313-2318 (2006).
[CrossRef]

Bures, J.

Burns, W. K.

Cai, H.

F. Pang, X. Han, H. Cai, R. Qu, and J. Fang, “An integrated optical waveguide ring resonator by using sol-gel technology,” Chin. J. Lasers 33 (4), 1-5 (2006).

Chen, R.

R. Chen and T. Bradshaw, “Linear location of acoustic emission using a pair of novel fibre optic sensors,” Meas. Sci. Technol. 17, 2313-2318 (2006).
[CrossRef]

R. Chen, Y. Liao, and G. Zheng, “A novel acoustic emission fiber optic sensor based on a single mode optical fiber coupler,” Chin. J. Lasers B 10, 195-198 (2001).

R. Chen, Y. Liao, G. T. Zheng, T. Liu, and G. F. Fernando, “Analysis of acousto-optic modulation in optical fiber coupler,” Proc. SPIE 4074, 377-379 (2000).
[CrossRef]

Chen, Z.

Del Villar, I.

I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A. 23, 651-658 (2006).
[CrossRef]

Fang, J.

F. Pang, X. Han, H. Cai, R. Qu, and J. Fang, “An integrated optical waveguide ring resonator by using sol-gel technology,” Chin. J. Lasers 33 (4), 1-5 (2006).

Fang, Y.

Y. Fang, “Equivalent step-index-fiber method for multicladding fibers,” J. Lightwave Technol. 11, 1523-1525 (1993).
[CrossRef]

Fernando, G. F.

R. Chen, Y. Liao, G. T. Zheng, T. Liu, and G. F. Fernando, “Analysis of acousto-optic modulation in optical fiber coupler,” Proc. SPIE 4074, 377-379 (2000).
[CrossRef]

Gafsi, R.

Han, X.

F. Pang, X. Han, H. Cai, R. Qu, and J. Fang, “An integrated optical waveguide ring resonator by using sol-gel technology,” Chin. J. Lasers 33 (4), 1-5 (2006).

Kang, E.-S.

E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett. 81, 1438-1440 (2002).
[CrossRef]

Lacroix, S.

Lapierre, J.

Lecoy, P.

Lee, T.-H.

E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett. 81, 1438-1440 (2002).
[CrossRef]

Liao, Y.

R. Chen, Y. Liao, and G. Zheng, “A novel acoustic emission fiber optic sensor based on a single mode optical fiber coupler,” Chin. J. Lasers B 10, 195-198 (2001).

R. Chen, Y. Liao, G. T. Zheng, T. Liu, and G. F. Fernando, “Analysis of acousto-optic modulation in optical fiber coupler,” Proc. SPIE 4074, 377-379 (2000).
[CrossRef]

Liu, T.

R. Chen, Y. Liao, G. T. Zheng, T. Liu, and G. F. Fernando, “Analysis of acousto-optic modulation in optical fiber coupler,” Proc. SPIE 4074, 377-379 (2000).
[CrossRef]

Malki, A.

Matias, I. R.

I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A. 23, 651-658 (2006).
[CrossRef]

Pang, F.

F. Pang, X. Han, H. Cai, R. Qu, and J. Fang, “An integrated optical waveguide ring resonator by using sol-gel technology,” Chin. J. Lasers 33 (4), 1-5 (2006).

Qu, R.

F. Pang, X. Han, H. Cai, R. Qu, and J. Fang, “An integrated optical waveguide ring resonator by using sol-gel technology,” Chin. J. Lasers 33 (4), 1-5 (2006).

Wang, T.-y.

H.-y. Bao and T.-y. Wang, “An enhanced fiber-optic temperature sensor for coupler visibility monitoring,” J. Optoelectron. Laser. 16, 1413-1416 (2005).

Zheng, G.

R. Chen, Y. Liao, and G. Zheng, “A novel acoustic emission fiber optic sensor based on a single mode optical fiber coupler,” Chin. J. Lasers B 10, 195-198 (2001).

Zheng, G. T.

R. Chen, Y. Liao, G. T. Zheng, T. Liu, and G. F. Fernando, “Analysis of acousto-optic modulation in optical fiber coupler,” Proc. SPIE 4074, 377-379 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

E.-S. Kang, T.-H. Lee, and B.-S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett. 81, 1438-1440 (2002).
[CrossRef]

Chin. J. Lasers

F. Pang, X. Han, H. Cai, R. Qu, and J. Fang, “An integrated optical waveguide ring resonator by using sol-gel technology,” Chin. J. Lasers 33 (4), 1-5 (2006).

Chin. J. Lasers B

R. Chen, Y. Liao, and G. Zheng, “A novel acoustic emission fiber optic sensor based on a single mode optical fiber coupler,” Chin. J. Lasers B 10, 195-198 (2001).

J. Lightwave Technol.

Y. Fang, “Equivalent step-index-fiber method for multicladding fibers,” J. Lightwave Technol. 11, 1523-1525 (1993).
[CrossRef]

J. Opt. Soc. Am. A.

I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A. 23, 651-658 (2006).
[CrossRef]

J. Optoelectron. Laser.

H.-y. Bao and T.-y. Wang, “An enhanced fiber-optic temperature sensor for coupler visibility monitoring,” J. Optoelectron. Laser. 16, 1413-1416 (2005).

Meas. Sci. Technol.

R. Chen and T. Bradshaw, “Linear location of acoustic emission using a pair of novel fibre optic sensors,” Meas. Sci. Technol. 17, 2313-2318 (2006).
[CrossRef]

Proc. SPIE

R. Chen, Y. Liao, G. T. Zheng, T. Liu, and G. F. Fernando, “Analysis of acousto-optic modulation in optical fiber coupler,” Proc. SPIE 4074, 377-379 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross section of an original coupler; (b) cross section of a coupler with film; (c) refractive index profile in a two-layer fiber; (d) refractive index profile in a three-layer fiber.

Fig. 2
Fig. 2

(a) Relationship between N e and thickness when a is 4 μ m and wavelength is 1.55 μ m ; (b) The sensitivity of the coated coupler model is at least 0.43 (percent/unit index) as a function of the thickness.

Fig. 3
Fig. 3

(a) Optical spectrum of the experimental coupler before and after coating. (b) Transmission spectrum shift by comparing theoretic and experimental results.

Fig. 4
Fig. 4

Transmission spectra of coupler with varying film index.

Fig. 5
Fig. 5

Scheme of fiber coupler temperature sensor.

Fig. 6
Fig. 6

(a) Transmission spectrum shift by changing temperature. (b) Relationship between resonate wavelength and temperature.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C = δ U 2 K 0 ( d a W ) a V 3 K 1 2 ( W ) ,
δ = 1 ( N out / N sub ) 2 , V = a k [ N sub 2 N out 2 ] 1 / 2 , U = a k [ N sub 2 N eff 2 ] 1 / 2 , W = a k [ N eff 2 N out 2 ] 1 / 2 ,
N e = N sub ( 1 + 2 Δ e ) 1 / 2 ,
Δ e e 2 n = 1 n 1 Δ n + 1 [ e 2 r n / r 1 e 2 ( r n + 1 ) / r 1 ] .
Δ 1 = N sub 2 N sub 2 2 N sub 2 , 0 < r < r 1 = a , Δ 2 = N sen 2 N sub 2 2 N sub 2 , r 1 < r < r 2 = a + thickness , Δ 3 = N out 2 N sub 2 2 N sub 2 , r 2 < r < r 3 = .
P = cos 2 ( l / 2 l / 2 C ( z ) d z ) .
P out 1 = η P in , P out 2 = ( 1 η ) P in .
CV = ( P out 1 P out 2 ) / ( P out 1 + P out 2 ) = 2 η 1.

Metrics