Abstract

A simple but reliable method, namely the working-point control by tuning the laser frequency, for the dynamic phase shift measurement in a passive homodyne interferometric fiber-optic sensor is proposed. A dc voltage calculated from the photodetector output is applied to the light source to control the interferometer at the condition of maximum sensitivity. Then the signal’s phase shift can be obtained from the components of zero and fundamental frequencies. To test the method, an all polarization-maintaining Mach–Zehnder interferometer with a piezoelectric ceramic (PbZrTiO3, or PZT) cylinder in one arm is constructed. The experimental results show that the simulation signal’s phase shift generated by the PZT cylinder can be read out correctly with the method. It has the advantages of simplicities of operation, no-active element in the sensing head, and large operating bandwidth. It can be used for readout of dynamic phase shifts in various interferometric fiber-optic sensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theor. Tech. 30, 472-511 (1982).
    [CrossRef]
  2. A. D. Kersey and A. Dandridge, “Applications of fiber-optic sensors,” IEEE Trans. Components, Hybrids, Manuf. Technol. 13, 137-143 (1990).
    [CrossRef]
  3. A. D. Kersey, “Multiplexed fiber optic sensors,” Proc. SPIE 1797, 161-185 (1992).
    [CrossRef]
  4. A. Dandridge, “The development of fiber optic sensor systems,” Proc. SPIE , 2360, 154-161 (1994).
    [CrossRef]
  5. P. Nash, “Review of interferometric optical fiber hydrophone technology,” IEE Proc. Radar. Sonar Navig. 143, 204-209(1996).
    [CrossRef]
  6. M. Szustakowski and W. M. Ciurapinski, “Interferometric fiber sensors: technology and application,” Proc. SPIE 4018, 80-95 (1999).
    [CrossRef]
  7. G. A. Cranch, P. J. Nash and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19-30 (2003).
    [CrossRef]
  8. M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson, and G. S. Kino, “Acoustic fiber sensor arrays,” Proc. SPIE 5502, 39-50 (2004).
    [CrossRef]
  9. A. Dandridge, A. B. Tveten and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647-1653(1982).
    [CrossRef]
  10. V. S. Sudarshanam and K. Srinivasan, “Linear readout of dynamic phase change in a fiber-optic homodyne interferometer,” Opt. Lett. 14, 140-142 (1989).
    [CrossRef] [PubMed]
  11. D. A. Jachson, R. Priest, A. Dandridge and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19, 2926-2929 (1980).
    [CrossRef]
  12. K. Liu, S. M. Ferguson and R. M. Measures, “Fiber-optic interferometric sensor for the detection of acoustic emission within composite materials,” Opt. Lett. 15, 1255-1257 (1990).
    [CrossRef] [PubMed]
  13. P. Shajenko and E. L. Green, “Signal stabilization of optical interferometric hydrophones by tuning the light source,” Appl. Opt. 19, 1895-1897 (1980).
    [CrossRef]
  14. A. Olsson, C. L. Tang, and E. L. Green, “Active stabilization of a Michelson interferometer by an electrooptically tuned laser,” Appl. Opt. 19, 1897-1899 (1980).
    [CrossRef] [PubMed]
  15. Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol. 24, 2179-2183 (2006).
    [CrossRef]
  16. Z. Wang, H. Luo, S. Xiong, M. Ni, and Y. Hu, “Phase compensating detection method of interferometric fiber-optic hydrophone by tuning the laser frequency,” Acta Optica Sin. 27, 654-658 (2007).

2007 (1)

Z. Wang, H. Luo, S. Xiong, M. Ni, and Y. Hu, “Phase compensating detection method of interferometric fiber-optic hydrophone by tuning the laser frequency,” Acta Optica Sin. 27, 654-658 (2007).

2006 (1)

2004 (1)

M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson, and G. S. Kino, “Acoustic fiber sensor arrays,” Proc. SPIE 5502, 39-50 (2004).
[CrossRef]

2003 (1)

G. A. Cranch, P. J. Nash and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19-30 (2003).
[CrossRef]

1999 (1)

M. Szustakowski and W. M. Ciurapinski, “Interferometric fiber sensors: technology and application,” Proc. SPIE 4018, 80-95 (1999).
[CrossRef]

1996 (1)

P. Nash, “Review of interferometric optical fiber hydrophone technology,” IEE Proc. Radar. Sonar Navig. 143, 204-209(1996).
[CrossRef]

1994 (1)

A. Dandridge, “The development of fiber optic sensor systems,” Proc. SPIE , 2360, 154-161 (1994).
[CrossRef]

1992 (1)

A. D. Kersey, “Multiplexed fiber optic sensors,” Proc. SPIE 1797, 161-185 (1992).
[CrossRef]

1990 (2)

A. D. Kersey and A. Dandridge, “Applications of fiber-optic sensors,” IEEE Trans. Components, Hybrids, Manuf. Technol. 13, 137-143 (1990).
[CrossRef]

K. Liu, S. M. Ferguson and R. M. Measures, “Fiber-optic interferometric sensor for the detection of acoustic emission within composite materials,” Opt. Lett. 15, 1255-1257 (1990).
[CrossRef] [PubMed]

1989 (1)

1982 (2)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theor. Tech. 30, 472-511 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647-1653(1982).
[CrossRef]

1980 (3)

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theor. Tech. 30, 472-511 (1982).
[CrossRef]

Ciurapinski, W. M.

M. Szustakowski and W. M. Ciurapinski, “Interferometric fiber sensors: technology and application,” Proc. SPIE 4018, 80-95 (1999).
[CrossRef]

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theor. Tech. 30, 472-511 (1982).
[CrossRef]

Cranch, G. A.

G. A. Cranch, P. J. Nash and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19-30 (2003).
[CrossRef]

Dandridge, A.

A. Dandridge, “The development of fiber optic sensor systems,” Proc. SPIE , 2360, 154-161 (1994).
[CrossRef]

A. D. Kersey and A. Dandridge, “Applications of fiber-optic sensors,” IEEE Trans. Components, Hybrids, Manuf. Technol. 13, 137-143 (1990).
[CrossRef]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theor. Tech. 30, 472-511 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647-1653(1982).
[CrossRef]

D. A. Jachson, R. Priest, A. Dandridge and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19, 2926-2929 (1980).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson, and G. S. Kino, “Acoustic fiber sensor arrays,” Proc. SPIE 5502, 39-50 (2004).
[CrossRef]

Ferguson, S. M.

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647-1653(1982).
[CrossRef]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theor. Tech. 30, 472-511 (1982).
[CrossRef]

Green, E. L.

Hodgson, C. W.

M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson, and G. S. Kino, “Acoustic fiber sensor arrays,” Proc. SPIE 5502, 39-50 (2004).
[CrossRef]

Hu, Y.

Z. Wang, H. Luo, S. Xiong, M. Ni, and Y. Hu, “Phase compensating detection method of interferometric fiber-optic hydrophone by tuning the laser frequency,” Acta Optica Sin. 27, 654-658 (2007).

Jachson, D. A.

Kersey, A. D.

A. D. Kersey, “Multiplexed fiber optic sensors,” Proc. SPIE 1797, 161-185 (1992).
[CrossRef]

A. D. Kersey and A. Dandridge, “Applications of fiber-optic sensors,” IEEE Trans. Components, Hybrids, Manuf. Technol. 13, 137-143 (1990).
[CrossRef]

Kino, G. S.

M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson, and G. S. Kino, “Acoustic fiber sensor arrays,” Proc. SPIE 5502, 39-50 (2004).
[CrossRef]

Kirkendall, C. K.

G. A. Cranch, P. J. Nash and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19-30 (2003).
[CrossRef]

Liu, K.

Luo, H.

Z. Wang, H. Luo, S. Xiong, M. Ni, and Y. Hu, “Phase compensating detection method of interferometric fiber-optic hydrophone by tuning the laser frequency,” Acta Optica Sin. 27, 654-658 (2007).

Measures, R. M.

Meng, Z.

Nash, P.

P. Nash, “Review of interferometric optical fiber hydrophone technology,” IEE Proc. Radar. Sonar Navig. 143, 204-209(1996).
[CrossRef]

Nash, P. J.

G. A. Cranch, P. J. Nash and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19-30 (2003).
[CrossRef]

Ni, M.

Z. Wang, H. Luo, S. Xiong, M. Ni, and Y. Hu, “Phase compensating detection method of interferometric fiber-optic hydrophone by tuning the laser frequency,” Acta Optica Sin. 27, 654-658 (2007).

Olsson, A.

Priest, R.

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theor. Tech. 30, 472-511 (1982).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theor. Tech. 30, 472-511 (1982).
[CrossRef]

Shajenko, P.

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theor. Tech. 30, 472-511 (1982).
[CrossRef]

Srinivasan, K.

Stewart, G.

Sudarshanam, V. S.

Szustakowski, M.

M. Szustakowski and W. M. Ciurapinski, “Interferometric fiber sensors: technology and application,” Proc. SPIE 4018, 80-95 (1999).
[CrossRef]

Tang, C. L.

Tveten, A. B.

A. Dandridge, A. B. Tveten and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647-1653(1982).
[CrossRef]

D. A. Jachson, R. Priest, A. Dandridge and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19, 2926-2929 (1980).
[CrossRef]

Vakoc, B. J.

M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson, and G. S. Kino, “Acoustic fiber sensor arrays,” Proc. SPIE 5502, 39-50 (2004).
[CrossRef]

Wang, Z.

Z. Wang, H. Luo, S. Xiong, M. Ni, and Y. Hu, “Phase compensating detection method of interferometric fiber-optic hydrophone by tuning the laser frequency,” Acta Optica Sin. 27, 654-658 (2007).

Whitenett, G.

Xiong, S.

Z. Wang, H. Luo, S. Xiong, M. Ni, and Y. Hu, “Phase compensating detection method of interferometric fiber-optic hydrophone by tuning the laser frequency,” Acta Optica Sin. 27, 654-658 (2007).

Acta Optica Sin. (1)

Z. Wang, H. Luo, S. Xiong, M. Ni, and Y. Hu, “Phase compensating detection method of interferometric fiber-optic hydrophone by tuning the laser frequency,” Acta Optica Sin. 27, 654-658 (2007).

Appl. Opt. (3)

IEE Proc. Radar. Sonar Navig. (1)

P. Nash, “Review of interferometric optical fiber hydrophone technology,” IEE Proc. Radar. Sonar Navig. 143, 204-209(1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Dandridge, A. B. Tveten and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647-1653(1982).
[CrossRef]

IEEE Sens. J. (1)

G. A. Cranch, P. J. Nash and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J. 3, 19-30 (2003).
[CrossRef]

IEEE Trans. Components, Hybrids, Manuf. Technol. (1)

A. D. Kersey and A. Dandridge, “Applications of fiber-optic sensors,” IEEE Trans. Components, Hybrids, Manuf. Technol. 13, 137-143 (1990).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh and R. G. Priest, “Optical fiber sensor technology,” IEEE Trans. Microwave Theor. Tech. 30, 472-511 (1982).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (2)

Proc. SPIE (4)

M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson, and G. S. Kino, “Acoustic fiber sensor arrays,” Proc. SPIE 5502, 39-50 (2004).
[CrossRef]

A. D. Kersey, “Multiplexed fiber optic sensors,” Proc. SPIE 1797, 161-185 (1992).
[CrossRef]

A. Dandridge, “The development of fiber optic sensor systems,” Proc. SPIE , 2360, 154-161 (1994).
[CrossRef]

M. Szustakowski and W. M. Ciurapinski, “Interferometric fiber sensors: technology and application,” Proc. SPIE 4018, 80-95 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Relations of calculated errors of x with the working point and the signal’s phase shift.

Fig. 2
Fig. 2

Experimental setup; PD, photodetector; DF, digital filter; ADC, analogue-digital converter; DAC, digital-analog converter; PC, personal computer.

Fig. 3
Fig. 3

Ramp voltage applied to the light source and the resultant sinusoidal signal at the photodetector.

Fig. 4
Fig. 4

Photodetector output: (a) without working-point control; (b) with working-point control near π / 2 ; the inserting figure zooms in on the signal over 0 0.01 s .

Fig. 5
Fig. 5

Course of working-point control.

Fig. 6
Fig. 6

Experimental phase shift as a function of voltage applied to the PZT cylinder at 2 kHz .

Fig. 7
Fig. 7

Stabilities of calculated x with different signal’s phase shifts of 0.2 rad (dots), 0.4 rad (squares), 0.6 rad (triangles), and 0.8 rad (asterisks).

Fig. 8
Fig. 8

Stabilities of calculated x with different working-point changing ranges of 80 ° 100 ° (dots), 60 ° 120 ° (asterisks), and 30 ° 150 ° (squares).

Tables (1)

Tables Icon

Table 1 Relations Between x max , δ, and ϕ p 0

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 2 π n l v c ,
Δ ϕ = 2 π c ( n v Δ l + v l Δ n + n l Δ v ) .
V ( t ) = A + B cos [ x sin ( ω s t + ϕ ) + ϕ p ] ,
V ( t ) = A + B J 0 ( x ) cos ϕ p { 2 B Σ k = 1 J 2 k 1 ( x ) sin [ ( 2 k 1 ) ( ω s t + ϕ s ) ] } sin ϕ p + { 2 B Σ k = 1 J 2 k ( x ) cos [ ( 2 k ) ( ω s t + ϕ s ) ] } cos ϕ p .
V ( t ) = A + B J 0 ( x ) cos ϕ p 2 B J 1 ( x ) sin ϕ p sin ( ω s t + ϕ s ) .
V i = A + B cos ϕ p B x sin ϕ p sin ( ω s t i + ϕ s ) , ( i = 1 , 2 , , N ) .
V ¯ = Σ i = 1 N V i = A + B cos ϕ p .
V ( t ) A x B sin ( ω s t + ϕ s ) .
Δ v = α Δ V ,
Δ ϕ p 2 π n l α c Δ V = K ϕ / V Δ V ,
V ( t ) = A + B cos ( K ϕ / V k t + ϕ n ) ,
A = ( V max + V min ) / 2 ,
B = ( V max V min ) / 2.
V d c = A + B J 0 ( x ) cos ϕ p ,
V a c = 2 B J 1 ( x ) sin ϕ p .
sin ϕ p [ 1 ( V d c A ) 2 / B 2 ] 1 / 2 .
J 1 ( x ) = V a c 2 [ B 2 ( V d c A ) 2 ] 1 / 2 .
J 1 ( x ) = J 1 ( x 0 ) sin ϕ p 0 [ 1 ( J 0 ( x 0 ) cos ϕ p 0 ) 2 ] 1 / 2 .
δ = | x x 0 | x 0 .

Metrics