Abstract

A single beamline of the National Ignition Facility (NIF) has been operated at a wavelength of 526.5nm (2ω) by frequency converting the fundamental 1053nm (1ω) wavelength with an 18.2mm thick type-I potassium dihydrogen phosphate (KDP) second-harmonic generator (SHG) crystal. Second-harmonic energies of up to 17.9kJ were measured at the final optics focal plane with a conversion efficiency of 82%. For a similarly configured 192-beam NIF, this scales to a total 2ω energy of 3.4MJ full NIF equivalent (FNE).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841-2853 (2004); see also the other papers in that special section pp. 2854-2911.
    [CrossRef]
  2. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276-3303 (2007).
    [CrossRef] [PubMed]
  3. L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
    [CrossRef]
  4. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 1-12 (2006).
  5. “NIF internal measurements and documentation,” to be published.
  6. J. D. Lindl, “The development of indirect drive ICF and the countdown to ignition experiments on the NIF,” to be published in Physics of Plasmas, Maxwell Prize Address, Division of Plasma Physics meeting.
  7. J. D. Lindl, Inertial Confinement Fusion (Springer Verlag, 1998).
  8. S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing full continuous phase plates for tailoring focal plane irradiance profiles,” Opt. Lett. 21, 1715-1717 (1996).
    [CrossRef] [PubMed]
  9. J. A. Menepace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220-230 (2003).
    [CrossRef]
  10. H. T. Powell, S. N. Dixit, and M. A. Henesian, “Beam smoothing capability on the nova laser,” Lawrence Livermore National Laboratory Rep. UCRL-LR-105821-91-1, (1990), pp. 28-38.
  11. R. Hawley-Fedder, H. Robey, T. Biesiada, M. DeHaven, R. Floyd, and A. Burnham, “Rapid growth of very large KDP and KD*P crystals in support of the National Ignition Facility,” Proc. SPIE 4102, 152-161 (2000).
    [CrossRef]
  12. C. E. Barker, R. A. Sacks and B. M. Van Wonterghem, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501-505 (1995).
    [CrossRef]
  13. D. Eimerl, “Quadrature frequency conversion,” IEEE J. Quantum Electron. QE-23, 1361-1371 (1987).
    [CrossRef]
  14. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser beam uniformity using angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456-4462 (1989).
    [CrossRef]
  15. Shot number N070926-002-999.
  16. J. R. Murray, J. Ray Smith, R. B. Erlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, “Experimental observation and suppression of transverse Brillouin scattering in large optical components,” J. Opt. Soc. Am. B 6, 2402-2411 (1989).
    [CrossRef]
  17. R. A. Sacks and S. N. Dixit, “Numerical modeling of transverse SRS and SBS in large-aperture high-power optical components,” presented at the Optical Society of America Nonlinear Optics'92, Lahaina, Maui, Hawaii, 18, August 1992.
  18. Shot number N070926-003-999.
  19. Shot number N070927-001-999.

2007 (1)

2006 (1)

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 1-12 (2006).

2004 (2)

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841-2853 (2004); see also the other papers in that special section pp. 2854-2911.
[CrossRef]

2003 (1)

J. A. Menepace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

2000 (1)

R. Hawley-Fedder, H. Robey, T. Biesiada, M. DeHaven, R. Floyd, and A. Burnham, “Rapid growth of very large KDP and KD*P crystals in support of the National Ignition Facility,” Proc. SPIE 4102, 152-161 (2000).
[CrossRef]

1996 (1)

1995 (1)

C. E. Barker, R. A. Sacks and B. M. Van Wonterghem, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501-505 (1995).
[CrossRef]

1989 (2)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser beam uniformity using angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456-4462 (1989).
[CrossRef]

J. R. Murray, J. Ray Smith, R. B. Erlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, “Experimental observation and suppression of transverse Brillouin scattering in large optical components,” J. Opt. Soc. Am. B 6, 2402-2411 (1989).
[CrossRef]

1987 (1)

D. Eimerl, “Quadrature frequency conversion,” IEEE J. Quantum Electron. QE-23, 1361-1371 (1987).
[CrossRef]

Auerbach, J. M.

Barker, C. E.

C. E. Barker, R. A. Sacks and B. M. Van Wonterghem, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501-505 (1995).
[CrossRef]

Biesiada, T.

R. Hawley-Fedder, H. Robey, T. Biesiada, M. DeHaven, R. Floyd, and A. Burnham, “Rapid growth of very large KDP and KD*P crystals in support of the National Ignition Facility,” Proc. SPIE 4102, 152-161 (2000).
[CrossRef]

Bowers, M. W.

Brocious, W. F.

J. A. Menepace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

Burnham, A.

R. Hawley-Fedder, H. Robey, T. Biesiada, M. DeHaven, R. Floyd, and A. Burnham, “Rapid growth of very large KDP and KD*P crystals in support of the National Ignition Facility,” Proc. SPIE 4102, 152-161 (2000).
[CrossRef]

Craxton, R. S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser beam uniformity using angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456-4462 (1989).
[CrossRef]

DeHaven, M.

R. Hawley-Fedder, H. Robey, T. Biesiada, M. DeHaven, R. Floyd, and A. Burnham, “Rapid growth of very large KDP and KD*P crystals in support of the National Ignition Facility,” Proc. SPIE 4102, 152-161 (2000).
[CrossRef]

Divol, L.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Dixit, S. N.

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276-3303 (2007).
[CrossRef] [PubMed]

J. A. Menepace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing full continuous phase plates for tailoring focal plane irradiance profiles,” Opt. Lett. 21, 1715-1717 (1996).
[CrossRef] [PubMed]

H. T. Powell, S. N. Dixit, and M. A. Henesian, “Beam smoothing capability on the nova laser,” Lawrence Livermore National Laboratory Rep. UCRL-LR-105821-91-1, (1990), pp. 28-38.

R. A. Sacks and S. N. Dixit, “Numerical modeling of transverse SRS and SBS in large-aperture high-power optical components,” presented at the Optical Society of America Nonlinear Optics'92, Lahaina, Maui, Hawaii, 18, August 1992.

Donohue, E. E.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 1-12 (2006).

Eimerl, D.

D. Eimerl, “Quadrature frequency conversion,” IEEE J. Quantum Electron. QE-23, 1361-1371 (1987).
[CrossRef]

Erbert, G. V.

Erlich, R. B.

Feit, M. D.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 1-12 (2006).

S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing full continuous phase plates for tailoring focal plane irradiance profiles,” Opt. Lett. 21, 1715-1717 (1996).
[CrossRef] [PubMed]

Floyd, R.

R. Hawley-Fedder, H. Robey, T. Biesiada, M. DeHaven, R. Floyd, and A. Burnham, “Rapid growth of very large KDP and KD*P crystals in support of the National Ignition Facility,” Proc. SPIE 4102, 152-161 (2000).
[CrossRef]

Genin, F. Y.

J. A. Menepace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

Glenzer, S.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Haan, S.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Hackel, R. P.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 1-12 (2006).

Hammel, B.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Hawley-Fedder, R.

R. Hawley-Fedder, H. Robey, T. Biesiada, M. DeHaven, R. Floyd, and A. Burnham, “Rapid growth of very large KDP and KD*P crystals in support of the National Ignition Facility,” Proc. SPIE 4102, 152-161 (2000).
[CrossRef]

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Hollingsworth, W. G.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 1-12 (2006).

Jancaitis, K. S.

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser beam uniformity using angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456-4462 (1989).
[CrossRef]

Kyrazis, D. T.

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser beam uniformity using angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456-4462 (1989).
[CrossRef]

Lindl, J. D.

J. D. Lindl, “The development of indirect drive ICF and the countdown to ignition experiments on the NIF,” to be published in Physics of Plasmas, Maxwell Prize Address, Division of Plasma Physics meeting.

J. D. Lindl, Inertial Confinement Fusion (Springer Verlag, 1998).

Manes, K.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Manes, K. R.

Marshall, C. D.

Meezan, N.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Mehta, N. C.

Menapace, J.

Menepace, J. A.

J. A. Menepace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

Miller, G. H.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841-2853 (2004); see also the other papers in that special section pp. 2854-2911.
[CrossRef]

Moody, J.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Moses, E.

Moses, E. I.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841-2853 (2004); see also the other papers in that special section pp. 2854-2911.
[CrossRef]

Murray, J. R.

Norton, M. A.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 1-12 (2006).

Nostrand, M. C.

Oades, K.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Orth, C. D.

Patterson, R.

Perry, M. D.

Powell, H. T.

S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing full continuous phase plates for tailoring focal plane irradiance profiles,” Opt. Lett. 21, 1715-1717 (1996).
[CrossRef] [PubMed]

H. T. Powell, S. N. Dixit, and M. A. Henesian, “Beam smoothing capability on the nova laser,” Lawrence Livermore National Laboratory Rep. UCRL-LR-105821-91-1, (1990), pp. 28-38.

Robey, H.

R. Hawley-Fedder, H. Robey, T. Biesiada, M. DeHaven, R. Floyd, and A. Burnham, “Rapid growth of very large KDP and KD*P crystals in support of the National Ignition Facility,” Proc. SPIE 4102, 152-161 (2000).
[CrossRef]

Rubenchik, A. M.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 1-12 (2006).

Sacks, R. A.

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276-3303 (2007).
[CrossRef] [PubMed]

C. E. Barker, R. A. Sacks and B. M. Van Wonterghem, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501-505 (1995).
[CrossRef]

R. A. Sacks and S. N. Dixit, “Numerical modeling of transverse SRS and SBS in large-aperture high-power optical components,” presented at the Optical Society of America Nonlinear Optics'92, Lahaina, Maui, Hawaii, 18, August 1992.

Saeth, M.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Shaw, M. J.

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser beam uniformity using angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456-4462 (1989).
[CrossRef]

Skupsky, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser beam uniformity using angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456-4462 (1989).
[CrossRef]

Smith, J. Ray

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser beam uniformity using angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456-4462 (1989).
[CrossRef]

Spaeth, M.

Spaeth, M. L.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 1-12 (2006).

Stevenson, M.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Suter, L. J.

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Sutton, S. B.

Thompson, C. E.

Van Wonterghem, B. M.

Wegner, P. J.

Weiland, T. L.

White, R. K.

Widmayer, C. C.

Wilcox, R. B.

Williams, W. H.

Wuest, C. R.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841-2853 (2004); see also the other papers in that special section pp. 2854-2911.
[CrossRef]

Yang, S. T.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

D. Eimerl, “Quadrature frequency conversion,” IEEE J. Quantum Electron. QE-23, 1361-1371 (1987).
[CrossRef]

J. Appl. Phys. (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser beam uniformity using angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456-4462 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841-2853 (2004); see also the other papers in that special section pp. 2854-2911.
[CrossRef]

Opt. Lett. (1)

Phys. Plasmas (1)

L. J. Suter, S. Glenzer, S. Haan, B. Hammel, K. Manes, N. Meezan, J. Moody, M. Saeth, and L. Divol, K. Oades, M. Stevenson, “Prospects for high-gain, yield National Ignition Facility targets driven by 2ω (green light),” Phys. Plasmas 11, 2738-2745 (2004).
[CrossRef]

Proc. SPIE (4)

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE 5991, 599108 1-12 (2006).

J. A. Menepace, S. N. Dixit, F. Y. Genin, and W. F. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces,” Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

R. Hawley-Fedder, H. Robey, T. Biesiada, M. DeHaven, R. Floyd, and A. Burnham, “Rapid growth of very large KDP and KD*P crystals in support of the National Ignition Facility,” Proc. SPIE 4102, 152-161 (2000).
[CrossRef]

C. E. Barker, R. A. Sacks and B. M. Van Wonterghem, “Transverse stimulated Raman scattering in KDP,” Proc. SPIE 2633, 501-505 (1995).
[CrossRef]

Other (8)

H. T. Powell, S. N. Dixit, and M. A. Henesian, “Beam smoothing capability on the nova laser,” Lawrence Livermore National Laboratory Rep. UCRL-LR-105821-91-1, (1990), pp. 28-38.

“NIF internal measurements and documentation,” to be published.

J. D. Lindl, “The development of indirect drive ICF and the countdown to ignition experiments on the NIF,” to be published in Physics of Plasmas, Maxwell Prize Address, Division of Plasma Physics meeting.

J. D. Lindl, Inertial Confinement Fusion (Springer Verlag, 1998).

Shot number N070926-002-999.

R. A. Sacks and S. N. Dixit, “Numerical modeling of transverse SRS and SBS in large-aperture high-power optical components,” presented at the Optical Society of America Nonlinear Optics'92, Lahaina, Maui, Hawaii, 18, August 1992.

Shot number N070926-003-999.

Shot number N070927-001-999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Final optics configuration for the 2 ω campaign. The lens is a 2 ω design with the correct wedge angle and focal length ( 7.7 m ) to focus 2 ω light on the target. A CCP [8, 9, 10] for shaping the focal spot resides in the 1 ω section and can be inserted into or removed from the beam depending on the shot requirements.

Fig. 2
Fig. 2

Nominal volume of KDP required to produce 42 × 42 cm NIF doublers cut for (a) type-I and (b) type-II phase-matching. Type-II plates require wider and taller boules and 20 % more material.

Fig. 3
Fig. 3

Plane-wave calculation illustrating thickness and angular sensitivities for the type-I KDP doubler used in these tests. Lines denote contours of constant 2 ω conversion efficiency in percent at two different 1 ω drive irradiances: 1 GW / cm 2 (dashed) and 3 GW / cm 2 (solid). The selected 18.2 mm thickness achieves efficiency between 70 and 90% throughout this power range and maintains efficiency 65 % at angular detunings as large as 125 μrad .

Fig. 4
Fig. 4

Energy and conditions of shots comprising the 2 ω campaign. Shots with focal spot conditioning are marked with an x for SSD and/or a circle for CPP. The solid bars refer to FIT pulses, while the dashed bars refer to shaped pulses.

Fig. 5
Fig. 5

(a) Measured and modeled 2 ω output energy at the 2 ω focal plane versus the 1 ω energy at the input of the final optics for 5 ns FIT pulses. Open circles are data taken without a CPP, while the open triangle is taken with a CPP. Solid (dashed) lines are model results without (with) a CPP. The error bar shown has a length of 2 standard deviations. (b) As in Fig. 5a, but for 10 ns FIT pulses. The open square is the single 12 ns data point, and the cross is the corresponding model point.

Fig. 6
Fig. 6

The fluence histogram of the 2 ω near field over the central 27 × 27 cm portion of the profile [15].

Fig. 7
Fig. 7

(a) Measured [15] (solid curves) and the fitted (dashed curves) spectra for the 1 ω input and (b)  2 ω output for the 16 kJ FIT pulse discussed in Fig. 6. The fits have 1 ω bandwidths: 30 GHz at 3 GHz , 145 GHz at 17 GHz and 2 ω bandwidths: 69 GHz at 3 GHz , 281 GHz at 17 GHz .

Fig. 8
Fig. 8

(left) Measured [15] 2 ω focal spot profile for the same 16 kJ shot discussed in Figs. 6, 7. (right) Modeled focal spot profile (radii of 1483 by 1062 μ at the 50% intensity points).

Fig. 9
Fig. 9

(a) Focal spot enclosed energy versus radius for the same 16 kJ shot [15] from Figs. 6, 7, 8. Measured (solid curve) and modeled (dashed curved) are in close agreement, as demonstrated by the ratio between these two curves (dash–dotted). (b) FOPAI comparisons for the CPP-generated, SSD-smoothed focal spots. The solid curve is the measured FOPAI spot, while the dashed curve is the calculated spot using the fabricated CPP phase profile.

Fig. 10
Fig. 10

Temporal power profiles and energies for the 2 ω shaped pulses showing the measured power (solid line) and modeled power (dotted line). (a) A surrogate ignition pulse [18]. (b) A surrogate equation of state pulse [19].

Tables (1)

Tables Icon

Table 1 Description of Optics Used in the Final Optical System during the 2 ω Campaign

Metrics