Abstract

A new type of laser-terahertz emission system for noncontact investigations of chemical solutions has been developed. The system monitors terahertz emission from a sensing plate, which consists of silicon oxide and silicon thin film layers on a sapphire substrate. Sensing of chemical solutions with pH values between 1.68 and 10.01 was demonstrated. The amplitude of the terahertz emission from the sensing plate increased with increasing pH value. This change in the amplitude was caused by a change in the depletion layers of the silicon thin film when protons were adsorbed on the surface of the sensing plate. This study demonstrates that full noncontact monitoring of chemical solutions is possible using the laser-terahertz emission system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284-286 (1984).
    [CrossRef]
  2. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716-1719 (1995).
    [CrossRef] [PubMed]
  3. M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
    [CrossRef]
  4. S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
    [CrossRef]
  5. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312-1314 (2002).
    [CrossRef]
  6. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058-2060 (2003).
    [CrossRef] [PubMed]
  7. K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  8. M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13, 115-120(2005).
    [CrossRef] [PubMed]
  9. D. H. Auston and K. P. Cheung, “Coherent time-domain far-infrared spectroscopy,” J. Opt. Soc. Am. B 2, 606-612(1985).
    [CrossRef]
  10. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  11. D. Grischkowsky and Sören Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57, 1055-1057 (1990).
    [CrossRef]
  12. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085-1094 (1999).
    [CrossRef]
  13. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146-7159(2002).
    [CrossRef]
  14. D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
    [CrossRef]
  15. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003).
    [CrossRef] [PubMed]
  16. B.-K. Sohn and C.-S. Kim, “A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen,” Sens. Actuators B 34, 435-440 (1996).
    [CrossRef]
  17. S. M.Khomoutov, I. A. Sidorov, and A. N. Reshetilov, “FET based biosensor for estimation of the effect of Ca2+ and Mg2+ on the immobilised butyrylcholinesterase,” Sens. Actuators B 48, 467-470 (1998).
    [CrossRef]
  18. D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuators B 117, 448-494 (2006).
    [CrossRef]
  19. T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86, 261102(2005).
    [CrossRef]
  20. X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surface,” Appl. Phys. Lett. 56, 1011-1013 (1990).
    [CrossRef]

2006

D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuators B 117, 448-494 (2006).
[CrossRef]

2005

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86, 261102(2005).
[CrossRef]

M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13, 115-120(2005).
[CrossRef] [PubMed]

2004

K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

2003

2002

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146-7159(2002).
[CrossRef]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312-1314 (2002).
[CrossRef]

1999

D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
[CrossRef]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
[CrossRef]

1998

S. M.Khomoutov, I. A. Sidorov, and A. N. Reshetilov, “FET based biosensor for estimation of the effect of Ca2+ and Mg2+ on the immobilised butyrylcholinesterase,” Sens. Actuators B 48, 467-470 (1998).
[CrossRef]

1996

M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
[CrossRef]

B.-K. Sohn and C.-S. Kim, “A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen,” Sens. Actuators B 34, 435-440 (1996).
[CrossRef]

1995

1990

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surface,” Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990).
[CrossRef]

D. Grischkowsky and Sören Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57, 1055-1057 (1990).
[CrossRef]

1985

1984

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284-286 (1984).
[CrossRef]

Abbot, D.

Arnone, D.

D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
[CrossRef]

Auston, D. H.

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surface,” Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

D. H. Auston and K. P. Cheung, “Coherent time-domain far-infrared spectroscopy,” J. Opt. Soc. Am. B 2, 606-612(1985).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284-286 (1984).
[CrossRef]

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146-7159(2002).
[CrossRef]

Bezant, C.

D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
[CrossRef]

Blundell, R.

S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
[CrossRef]

Calawa, S. D.

S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
[CrossRef]

Chamberlain, J. M.

D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
[CrossRef]

Cheung, K. P.

D. H. Auston and K. P. Cheung, “Coherent time-domain far-infrared spectroscopy,” J. Opt. Soc. Am. B 2, 606-612(1985).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284-286 (1984).
[CrossRef]

Ciesla, C. M.

D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
[CrossRef]

Corchia, A.

D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
[CrossRef]

Darrow, J. T.

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surface,” Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Duerr, E. K.

S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
[CrossRef]

Duffy, S. M.

S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
[CrossRef]

Egusa, S.

D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
[CrossRef]

Fattinger, C.

Ferguson, B.

Gray, D.

Grischkowsky, D.

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Hangyo, M.

M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
[CrossRef]

Hu, B. B.

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716-1719 (1995).
[CrossRef] [PubMed]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surface,” Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Inoue, H.

Kawase, K.

Keiding, S.

Keiding, Sören

D. Grischkowsky and Sören Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57, 1055-1057 (1990).
[CrossRef]

Khomoutov, S. M.

S. M.Khomoutov, I. A. Sidorov, and A. N. Reshetilov, “FET based biosensor for estimation of the effect of Ca2+ and Mg2+ on the immobilised butyrylcholinesterase,” Sens. Actuators B 48, 467-470 (1998).
[CrossRef]

Kim, C.-S.

B.-K. Sohn and C.-S. Kim, “A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen,” Sens. Actuators B 34, 435-440 (1996).
[CrossRef]

Kim, D.-S.

D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuators B 117, 448-494 (2006).
[CrossRef]

Kim, P. K.

D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuators B 117, 448-494 (2006).
[CrossRef]

Kimberk, R.

S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
[CrossRef]

Kiwa, T.

Koch, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Lim, G.

D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuators B 117, 448-494 (2006).
[CrossRef]

Linfield, E. H.

D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
[CrossRef]

McIntosh, K. A.

S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
[CrossRef]

Migitaka, S.

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86, 261102(2005).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Mittleman, M.

K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Murakami, Y.

M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
[CrossRef]

Nakashima, S.

M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
[CrossRef]

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Nuss, M. C.

Ogawa, Y.

Otani, C.

Park, J.-E.

D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuators B 117, 448-494 (2006).
[CrossRef]

Pepper, M.

D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
[CrossRef]

Reshetilov, A. N.

S. M.Khomoutov, I. A. Sidorov, and A. N. Reshetilov, “FET based biosensor for estimation of the effect of Ca2+ and Mg2+ on the immobilised butyrylcholinesterase,” Sens. Actuators B 48, 467-470 (1998).
[CrossRef]

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Sakai, K.

M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
[CrossRef]

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146-7159(2002).
[CrossRef]

Shin, J.-K.

D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuators B 117, 448-494 (2006).
[CrossRef]

Shoji, S.

D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuators B 117, 448-494 (2006).
[CrossRef]

Sidorov, I. A.

S. M.Khomoutov, I. A. Sidorov, and A. N. Reshetilov, “FET based biosensor for estimation of the effect of Ca2+ and Mg2+ on the immobilised butyrylcholinesterase,” Sens. Actuators B 48, 467-470 (1998).
[CrossRef]

Smith, P. R.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284-286 (1984).
[CrossRef]

Sohn, B.-K.

B.-K. Sohn and C.-S. Kim, “A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen,” Sens. Actuators B 34, 435-440 (1996).
[CrossRef]

Suzuki, M.

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86, 261102(2005).
[CrossRef]

Tani, M.

M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
[CrossRef]

Tomozawa, S.

M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
[CrossRef]

Tong, C.-Y. E.

S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
[CrossRef]

Tonouchi, M.

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86, 261102(2005).
[CrossRef]

M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, “Imaging of large-scale integrated circuits using laser-terahertz emission microscopy,” Opt. Express 13, 115-120(2005).
[CrossRef] [PubMed]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058-2060 (2003).
[CrossRef] [PubMed]

M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
[CrossRef]

Tsukada, K.

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86, 261102(2005).
[CrossRef]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146-7159(2002).
[CrossRef]

van Exter, M.

Verghese, S.

S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
[CrossRef]

Wang, K.

K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Wang, S.

Wang, Z.

M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
[CrossRef]

Watanabe, Y.

Yamashita, M.

Yokosawa, K.

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86, 261102(2005).
[CrossRef]

Zhang, X.-C.

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27, 1312-1314 (2002).
[CrossRef]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surface,” Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Appl. Phys. B

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085-1094 (1999).
[CrossRef]

Appl. Phys. Lett.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284-286 (1984).
[CrossRef]

T. Kiwa, K. Tsukada, M. Suzuki, M. Tonouchi, S. Migitaka, and K. Yokosawa, “Laser terahertz emission system to investigate hydrogen gas sensors,” Appl. Phys. Lett. 86, 261102(2005).
[CrossRef]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surface,” Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

D. Grischkowsky and Sören Keiding, “THz time-domain spectroscopy of high Tc substrates,” Appl. Phys. Lett. 57, 1055-1057 (1990).
[CrossRef]

IEEE Microwave Guid. Wave Lett.

S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630 GHz heterodyne receiver,” IEEE Microwave Guid. Wave Lett. 9, 245-247 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Terahertz spectroscopy,” J. Phys. Chem. B 106, 7146-7159(2002).
[CrossRef]

Jpn. J. Appl. Phys.

M. Tonouchi, M. Tani, Z. Wang, K. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, and S. Nakashima, “Ultrashort electromagnetic pulse radiation from YBCO thin films excited by femtosecond optical pulse,” Jpn. J. Appl. Phys. 35, 2624-2632 (1996).
[CrossRef]

Nature

K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

D. Arnone, C. M. Ciesla, A. Corchia, S. Egusa, M. Pepper, J. M. Chamberlain, C. Bezant, and E. H. Linfield, “Applications of THz technology to medical imaging,” Proc. SPIE 2838209-219 (1999).
[CrossRef]

Sens. Actuators B

B.-K. Sohn and C.-S. Kim, “A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen,” Sens. Actuators B 34, 435-440 (1996).
[CrossRef]

S. M.Khomoutov, I. A. Sidorov, and A. N. Reshetilov, “FET based biosensor for estimation of the effect of Ca2+ and Mg2+ on the immobilised butyrylcholinesterase,” Sens. Actuators B 48, 467-470 (1998).
[CrossRef]

D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuators B 117, 448-494 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the sensing plate mounted on the solution cell.

Fig. 2
Fig. 2

Optical setup of the terahertz readout system from the sensing plate.

Fig. 3
Fig. 3

Typical time-domain waveform from the sensing plate and its Fourier spectrum (inset). The optical delay was fixed at 8.0 ps (indicated by the black arrow) during the pH measurements.

Fig. 4
Fig. 4

Terahertz response without a bias voltage.

Fig. 5
Fig. 5

Terahertz peak amplitude as a function of pH value of the solution.

Fig. 6
Fig. 6

Terahertz response with various bias voltages.

Fig. 7
Fig. 7

Terahertz response for various voltages showing the terahertz peak amplitude for the cyclic bias voltage.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E THz = / t ( n e v ) ,

Metrics