Abstract

Isotope selective excitation of a Ca41 isotope using a near-resonant two-photon ionization scheme 4s2S01422.7924nm,413.3685nm4s11sS01514.5nmCa+ has been proposed for using the Ca41 isotope in applications as a tracer in biomedical studies. The ionization efficiency and optical selectivity have been calculated for various powers of the excitation and ionization laser. Under the optimized excitation and ionization laser powers the ionization efficiency for the studied scheme is found to be 1.7×104. The optical selectivity value is 1.0×105 and both of these values are either comparable or slightly better than the earlier published work by our group. The overall ionization efficiency for the two-photon ionization scheme considering the throughput factor is 5×103, which is 2 orders of magnitude higher than the stepwise excitation process. Therefore, the higher ionization efficiency of the process enables monitoring of the tracer isotope for longer durations. In combination with a mass spectrometer, an abundance sensitivity of 1010 can be obtained, which is adequate for biomedical applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Fink, J. Klein, and R. Middleton, “41Ca: past, present and future,” Nucl. Instrum. Methods Phys. Res. 52B, 572-582(1990).
    [CrossRef]
  2. R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
    [CrossRef]
  3. S. P. H. T. Freeman, J. C. King, N. E. Vieira, L. R. Woodhouse, and A. L. Yergey, “Human calcium metabolism including bone resorption measured with 41Ca tracer,” Nucl. Instrum. Methods Phys. Res. B 123, 266-270 (1997).
    [CrossRef]
  4. B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high resolution double resonance ionization mass spectrometry,” Spectrochim. Acta B 54, 321-332 (1999).
    [CrossRef]
  5. W. Nortershauser, B. A. Bushaw, P. Muller, and K. Wendt, “Lineshapes in triple resonance ionization spetroscopy,” Appl. Opt. 39, 5590-5600 (2000).
    [CrossRef]
  6. W. D. Brandon, W. R. Garrett, C. H. Chen, S. L. Allman, and M. G. Payne, “Experimental verification of a simple method to avoid isotopic bisases resulting from hyperfine structure in resonant ionization mass spectroscopy,” Spectrochim. Acta B 49, 1057-1066 (1994).
    [CrossRef]
  7. M. G. Payne, S. L. Allman, and J. E. Parks, “Effect of hyperfine structure on ionization efficiencies in stepwise ionization using broad bandwidth lasers,” Spectrochim. Acta B 46, 1439-1457 (1991).
    [CrossRef]
  8. P. A. Bokhan, D. E. Zakrevskii, and N. V. Fateev, “Selective photochemical isotope burning upon the interaction of resonant laser radiation with atoms,” JETP Lett. 75, 170-173(2002).
    [CrossRef]
  9. R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz CD-ROM No. 23, Cambridge (Smithsonian Astrophysical Observatory, 1995).
  10. R. L. Kurucz, 1988 Transactions of the International Astronomical Union, XXB, M. McNally, ed. (Dorschedt: Kluwer, 1966) pp. 168-172.
  11. W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic transition probabilities, elements hydrogen through neon,” NSRDS-NBS 4 (Government Printing Office, 1966), p. 153.
  12. J. C. Camparo and P. Lambropoulos, “Stark shift of a two-photon transition induced by a model stochastic field,” J. Opt. Soc. Am. B 9, 2163-2170 (1992).
    [CrossRef]
  13. B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).
  14. T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by stark-chiped rapid adiabatic passage,” Opt. Commun. 227, 133-142 (2003).
    [CrossRef]
  15. T. Halfmann, T. Rickes, N. V. Vitanov, and K. Bergmann, “Lineshapes in coherent two-photon excitation,” Opt. Commun. 220, 353-359 (2003).
    [CrossRef]
  16. P. V. Kirankumar, M. Sankari, and M. V. Suryanarayana, “Isotope selective near-resonant two-photon ionization of calcium isotopes,” J. Phys. D: Appl. Phys. 40, 288-293(2007).
    [CrossRef]
  17. C. J. Lorenzen, K.Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
    [CrossRef]
  18. W. Nortershauser, N. Trautmann, K. Wendt, and B. A. Bushaw, Spectrochim. Acta B 53, 709-721 (1998).
    [CrossRef]

2007

P. V. Kirankumar, M. Sankari, and M. V. Suryanarayana, “Isotope selective near-resonant two-photon ionization of calcium isotopes,” J. Phys. D: Appl. Phys. 40, 288-293(2007).
[CrossRef]

2003

T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by stark-chiped rapid adiabatic passage,” Opt. Commun. 227, 133-142 (2003).
[CrossRef]

T. Halfmann, T. Rickes, N. V. Vitanov, and K. Bergmann, “Lineshapes in coherent two-photon excitation,” Opt. Commun. 220, 353-359 (2003).
[CrossRef]

2002

P. A. Bokhan, D. E. Zakrevskii, and N. V. Fateev, “Selective photochemical isotope burning upon the interaction of resonant laser radiation with atoms,” JETP Lett. 75, 170-173(2002).
[CrossRef]

2000

1999

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high resolution double resonance ionization mass spectrometry,” Spectrochim. Acta B 54, 321-332 (1999).
[CrossRef]

1998

W. Nortershauser, N. Trautmann, K. Wendt, and B. A. Bushaw, Spectrochim. Acta B 53, 709-721 (1998).
[CrossRef]

1997

S. P. H. T. Freeman, J. C. King, N. E. Vieira, L. R. Woodhouse, and A. L. Yergey, “Human calcium metabolism including bone resorption measured with 41Ca tracer,” Nucl. Instrum. Methods Phys. Res. B 123, 266-270 (1997).
[CrossRef]

1995

R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz CD-ROM No. 23, Cambridge (Smithsonian Astrophysical Observatory, 1995).

1994

W. D. Brandon, W. R. Garrett, C. H. Chen, S. L. Allman, and M. G. Payne, “Experimental verification of a simple method to avoid isotopic bisases resulting from hyperfine structure in resonant ionization mass spectroscopy,” Spectrochim. Acta B 49, 1057-1066 (1994).
[CrossRef]

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

1992

1991

M. G. Payne, S. L. Allman, and J. E. Parks, “Effect of hyperfine structure on ionization efficiencies in stepwise ionization using broad bandwidth lasers,” Spectrochim. Acta B 46, 1439-1457 (1991).
[CrossRef]

1990

D. Fink, J. Klein, and R. Middleton, “41Ca: past, present and future,” Nucl. Instrum. Methods Phys. Res. 52B, 572-582(1990).
[CrossRef]

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).

1983

C. J. Lorenzen, K.Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

1966

R. L. Kurucz, 1988 Transactions of the International Astronomical Union, XXB, M. McNally, ed. (Dorschedt: Kluwer, 1966) pp. 168-172.

W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic transition probabilities, elements hydrogen through neon,” NSRDS-NBS 4 (Government Printing Office, 1966), p. 153.

Allman, S. L.

W. D. Brandon, W. R. Garrett, C. H. Chen, S. L. Allman, and M. G. Payne, “Experimental verification of a simple method to avoid isotopic bisases resulting from hyperfine structure in resonant ionization mass spectroscopy,” Spectrochim. Acta B 49, 1057-1066 (1994).
[CrossRef]

M. G. Payne, S. L. Allman, and J. E. Parks, “Effect of hyperfine structure on ionization efficiencies in stepwise ionization using broad bandwidth lasers,” Spectrochim. Acta B 46, 1439-1457 (1991).
[CrossRef]

Bell, B.

R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz CD-ROM No. 23, Cambridge (Smithsonian Astrophysical Observatory, 1995).

Bergmann, K.

T. Halfmann, T. Rickes, N. V. Vitanov, and K. Bergmann, “Lineshapes in coherent two-photon excitation,” Opt. Commun. 220, 353-359 (2003).
[CrossRef]

Berkovits, D.

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

Boaretto, E.

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

Bokhan, P. A.

P. A. Bokhan, D. E. Zakrevskii, and N. V. Fateev, “Selective photochemical isotope burning upon the interaction of resonant laser radiation with atoms,” JETP Lett. 75, 170-173(2002).
[CrossRef]

Brandon, W. D.

W. D. Brandon, W. R. Garrett, C. H. Chen, S. L. Allman, and M. G. Payne, “Experimental verification of a simple method to avoid isotopic bisases resulting from hyperfine structure in resonant ionization mass spectroscopy,” Spectrochim. Acta B 49, 1057-1066 (1994).
[CrossRef]

Bushaw, B. A.

W. Nortershauser, B. A. Bushaw, P. Muller, and K. Wendt, “Lineshapes in triple resonance ionization spetroscopy,” Appl. Opt. 39, 5590-5600 (2000).
[CrossRef]

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high resolution double resonance ionization mass spectrometry,” Spectrochim. Acta B 54, 321-332 (1999).
[CrossRef]

W. Nortershauser, N. Trautmann, K. Wendt, and B. A. Bushaw, Spectrochim. Acta B 53, 709-721 (1998).
[CrossRef]

Camparo, J. C.

Chen, C. H.

W. D. Brandon, W. R. Garrett, C. H. Chen, S. L. Allman, and M. G. Payne, “Experimental verification of a simple method to avoid isotopic bisases resulting from hyperfine structure in resonant ionization mass spectroscopy,” Spectrochim. Acta B 49, 1057-1066 (1994).
[CrossRef]

Fateev, N. V.

P. A. Bokhan, D. E. Zakrevskii, and N. V. Fateev, “Selective photochemical isotope burning upon the interaction of resonant laser radiation with atoms,” JETP Lett. 75, 170-173(2002).
[CrossRef]

Fink, D.

D. Fink, J. Klein, and R. Middleton, “41Ca: past, present and future,” Nucl. Instrum. Methods Phys. Res. 52B, 572-582(1990).
[CrossRef]

Freeman, S. P. H. T.

S. P. H. T. Freeman, J. C. King, N. E. Vieira, L. R. Woodhouse, and A. L. Yergey, “Human calcium metabolism including bone resorption measured with 41Ca tracer,” Nucl. Instrum. Methods Phys. Res. B 123, 266-270 (1997).
[CrossRef]

Garrett, W. R.

W. D. Brandon, W. R. Garrett, C. H. Chen, S. L. Allman, and M. G. Payne, “Experimental verification of a simple method to avoid isotopic bisases resulting from hyperfine structure in resonant ionization mass spectroscopy,” Spectrochim. Acta B 49, 1057-1066 (1994).
[CrossRef]

Gehlberg, S.

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

Gelbart, Z.

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

Glennon, B. M.

W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic transition probabilities, elements hydrogen through neon,” NSRDS-NBS 4 (Government Printing Office, 1966), p. 153.

Halfmann, T.

T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by stark-chiped rapid adiabatic passage,” Opt. Commun. 227, 133-142 (2003).
[CrossRef]

T. Halfmann, T. Rickes, N. V. Vitanov, and K. Bergmann, “Lineshapes in coherent two-photon excitation,” Opt. Commun. 220, 353-359 (2003).
[CrossRef]

Johnson, R. R.

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

K.,

C. J. Lorenzen, K.Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

King, J. C.

S. P. H. T. Freeman, J. C. King, N. E. Vieira, L. R. Woodhouse, and A. L. Yergey, “Human calcium metabolism including bone resorption measured with 41Ca tracer,” Nucl. Instrum. Methods Phys. Res. B 123, 266-270 (1997).
[CrossRef]

Kirankumar, P. V.

P. V. Kirankumar, M. Sankari, and M. V. Suryanarayana, “Isotope selective near-resonant two-photon ionization of calcium isotopes,” J. Phys. D: Appl. Phys. 40, 288-293(2007).
[CrossRef]

Klein, J.

D. Fink, J. Klein, and R. Middleton, “41Ca: past, present and future,” Nucl. Instrum. Methods Phys. Res. 52B, 572-582(1990).
[CrossRef]

Kurucz, R. L.

R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz CD-ROM No. 23, Cambridge (Smithsonian Astrophysical Observatory, 1995).

R. L. Kurucz, 1988 Transactions of the International Astronomical Union, XXB, M. McNally, ed. (Dorschedt: Kluwer, 1966) pp. 168-172.

Lambropoulos, P.

Lorenzen, C. J.

C. J. Lorenzen, K.Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

Marangos, J. P.

T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by stark-chiped rapid adiabatic passage,” Opt. Commun. 227, 133-142 (2003).
[CrossRef]

Meiray, O.

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

Middleton, R.

D. Fink, J. Klein, and R. Middleton, “41Ca: past, present and future,” Nucl. Instrum. Methods Phys. Res. 52B, 572-582(1990).
[CrossRef]

Muller, P.

Niemax,

C. J. Lorenzen, K.Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

Nortershauser, W.

W. Nortershauser, B. A. Bushaw, P. Muller, and K. Wendt, “Lineshapes in triple resonance ionization spetroscopy,” Appl. Opt. 39, 5590-5600 (2000).
[CrossRef]

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high resolution double resonance ionization mass spectrometry,” Spectrochim. Acta B 54, 321-332 (1999).
[CrossRef]

W. Nortershauser, N. Trautmann, K. Wendt, and B. A. Bushaw, Spectrochim. Acta B 53, 709-721 (1998).
[CrossRef]

Parks, J. E.

M. G. Payne, S. L. Allman, and J. E. Parks, “Effect of hyperfine structure on ionization efficiencies in stepwise ionization using broad bandwidth lasers,” Spectrochim. Acta B 46, 1439-1457 (1991).
[CrossRef]

Paul, M.

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

Payne, M. G.

W. D. Brandon, W. R. Garrett, C. H. Chen, S. L. Allman, and M. G. Payne, “Experimental verification of a simple method to avoid isotopic bisases resulting from hyperfine structure in resonant ionization mass spectroscopy,” Spectrochim. Acta B 49, 1057-1066 (1994).
[CrossRef]

M. G. Payne, S. L. Allman, and J. E. Parks, “Effect of hyperfine structure on ionization efficiencies in stepwise ionization using broad bandwidth lasers,” Spectrochim. Acta B 46, 1439-1457 (1991).
[CrossRef]

Pendrill, L. R.

C. J. Lorenzen, K.Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

Rickes, T.

T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by stark-chiped rapid adiabatic passage,” Opt. Commun. 227, 133-142 (2003).
[CrossRef]

T. Halfmann, T. Rickes, N. V. Vitanov, and K. Bergmann, “Lineshapes in coherent two-photon excitation,” Opt. Commun. 220, 353-359 (2003).
[CrossRef]

Sankari, M.

P. V. Kirankumar, M. Sankari, and M. V. Suryanarayana, “Isotope selective near-resonant two-photon ionization of calcium isotopes,” J. Phys. D: Appl. Phys. 40, 288-293(2007).
[CrossRef]

Shore, B. W.

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).

Smith, M. W.

W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic transition probabilities, elements hydrogen through neon,” NSRDS-NBS 4 (Government Printing Office, 1966), p. 153.

Sossi, V.

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

Suryanarayana, M. V.

P. V. Kirankumar, M. Sankari, and M. V. Suryanarayana, “Isotope selective near-resonant two-photon ionization of calcium isotopes,” J. Phys. D: Appl. Phys. 40, 288-293(2007).
[CrossRef]

Trautmann, N.

W. Nortershauser, N. Trautmann, K. Wendt, and B. A. Bushaw, Spectrochim. Acta B 53, 709-721 (1998).
[CrossRef]

Venezel, E.

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

Vieira, N. E.

S. P. H. T. Freeman, J. C. King, N. E. Vieira, L. R. Woodhouse, and A. L. Yergey, “Human calcium metabolism including bone resorption measured with 41Ca tracer,” Nucl. Instrum. Methods Phys. Res. B 123, 266-270 (1997).
[CrossRef]

Vitanov, N. V.

T. Halfmann, T. Rickes, N. V. Vitanov, and K. Bergmann, “Lineshapes in coherent two-photon excitation,” Opt. Commun. 220, 353-359 (2003).
[CrossRef]

Wendt, K.

W. Nortershauser, B. A. Bushaw, P. Muller, and K. Wendt, “Lineshapes in triple resonance ionization spetroscopy,” Appl. Opt. 39, 5590-5600 (2000).
[CrossRef]

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high resolution double resonance ionization mass spectrometry,” Spectrochim. Acta B 54, 321-332 (1999).
[CrossRef]

W. Nortershauser, N. Trautmann, K. Wendt, and B. A. Bushaw, Spectrochim. Acta B 53, 709-721 (1998).
[CrossRef]

Wiese, W. L.

W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic transition probabilities, elements hydrogen through neon,” NSRDS-NBS 4 (Government Printing Office, 1966), p. 153.

Woodhouse, L. R.

S. P. H. T. Freeman, J. C. King, N. E. Vieira, L. R. Woodhouse, and A. L. Yergey, “Human calcium metabolism including bone resorption measured with 41Ca tracer,” Nucl. Instrum. Methods Phys. Res. B 123, 266-270 (1997).
[CrossRef]

Yergey, A. L.

S. P. H. T. Freeman, J. C. King, N. E. Vieira, L. R. Woodhouse, and A. L. Yergey, “Human calcium metabolism including bone resorption measured with 41Ca tracer,” Nucl. Instrum. Methods Phys. Res. B 123, 266-270 (1997).
[CrossRef]

Zakrevskii, D. E.

P. A. Bokhan, D. E. Zakrevskii, and N. V. Fateev, “Selective photochemical isotope burning upon the interaction of resonant laser radiation with atoms,” JETP Lett. 75, 170-173(2002).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. B

J. Phys. D: Appl. Phys.

P. V. Kirankumar, M. Sankari, and M. V. Suryanarayana, “Isotope selective near-resonant two-photon ionization of calcium isotopes,” J. Phys. D: Appl. Phys. 40, 288-293(2007).
[CrossRef]

JETP Lett.

P. A. Bokhan, D. E. Zakrevskii, and N. V. Fateev, “Selective photochemical isotope burning upon the interaction of resonant laser radiation with atoms,” JETP Lett. 75, 170-173(2002).
[CrossRef]

Nucl. Instrum. Methods Phys. Res.

D. Fink, J. Klein, and R. Middleton, “41Ca: past, present and future,” Nucl. Instrum. Methods Phys. Res. 52B, 572-582(1990).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

R. R. Johnson, D. Berkovits, E. Boaretto, Z. Gelbart, S. Gehlberg, O. Meiray, M. Paul, V. Sossi, and E. Venezel, “Calcium resorption from bone in a human studied by 41Ca tracing,” Nucl. Instrum. Methods Phys. Res. B 92, 483-488(1994).
[CrossRef]

S. P. H. T. Freeman, J. C. King, N. E. Vieira, L. R. Woodhouse, and A. L. Yergey, “Human calcium metabolism including bone resorption measured with 41Ca tracer,” Nucl. Instrum. Methods Phys. Res. B 123, 266-270 (1997).
[CrossRef]

Opt. Commun.

T. Rickes, J. P. Marangos, and T. Halfmann, “Enhancement of third-harmonic generation by stark-chiped rapid adiabatic passage,” Opt. Commun. 227, 133-142 (2003).
[CrossRef]

T. Halfmann, T. Rickes, N. V. Vitanov, and K. Bergmann, “Lineshapes in coherent two-photon excitation,” Opt. Commun. 220, 353-359 (2003).
[CrossRef]

Phys. Rev. A

C. J. Lorenzen, K.Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

Spectrochim. Acta B

W. Nortershauser, N. Trautmann, K. Wendt, and B. A. Bushaw, Spectrochim. Acta B 53, 709-721 (1998).
[CrossRef]

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high resolution double resonance ionization mass spectrometry,” Spectrochim. Acta B 54, 321-332 (1999).
[CrossRef]

W. D. Brandon, W. R. Garrett, C. H. Chen, S. L. Allman, and M. G. Payne, “Experimental verification of a simple method to avoid isotopic bisases resulting from hyperfine structure in resonant ionization mass spectroscopy,” Spectrochim. Acta B 49, 1057-1066 (1994).
[CrossRef]

M. G. Payne, S. L. Allman, and J. E. Parks, “Effect of hyperfine structure on ionization efficiencies in stepwise ionization using broad bandwidth lasers,” Spectrochim. Acta B 46, 1439-1457 (1991).
[CrossRef]

Other

R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz CD-ROM No. 23, Cambridge (Smithsonian Astrophysical Observatory, 1995).

R. L. Kurucz, 1988 Transactions of the International Astronomical Union, XXB, M. McNally, ed. (Dorschedt: Kluwer, 1966) pp. 168-172.

W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic transition probabilities, elements hydrogen through neon,” NSRDS-NBS 4 (Government Printing Office, 1966), p. 153.

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of (a) the two-photon near-resonance ionization process and (b) the two-step resonant ionization process

Fig. 2
Fig. 2

Two-photon Rabi frequency coefficient C 12 as a function of detuning of the first excitation laser from the intermediate state.

Fig. 3
Fig. 3

Velocity dependent two-photon detuning as a function of the velocity of atoms along the axis of the first laser.

Fig. 4
Fig. 4

Two-photon ionization line shape of calcium. The power of excitation lasers are 30 and 400 mw , respectively, and the ionization laser power is 4 W for the above line shape computation. Detuning from the intermediate level is set to 500 MHz and optical selectivity is 1 × 10 5 .

Tables (6)

Tables Icon

Table 1 Two-Photon Rabi Frequency Coefficient as a Function of Detuning

Tables Icon

Table 2 AC-Stark Shift Coefficients for the Two Excitation Lasers Powers of 30 and 400 mW and for an Ionization Laser Power of 4 W for the Two Different Cases of Detuning

Tables Icon

Table 3 Isotope Shifts of Calcium Isotopes Relative to the C a 40 Isotope For the Stepwise Excitation and Two-Photon Excitation Schemes

Tables Icon

Table 4 Ionization Efficiency and Optical Selectivity as a Function of Laser Powers for Various Laser Detunings from the Intermediate Level a

Tables Icon

Table 5 Ionization Efficiency and Optical Selectivity as a Function of Laser Powers for Various Powers of the Ionization Laser for a Detuning of 500 MHz from the Intermediate Level

Tables Icon

Table 6 Ionization Efficiency of the Various Isotopes of Calcium for the Stepwise Excitation Process a

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

ρ ˙ 11 = i 2 ( Ω 12 * ρ 21 Ω 12 ρ 12 ) + 2 i γ i 1 ρ i i ,
ρ ˙ 22 = i 2 ( Ω 21 ρ 12 Ω 21 * ρ 12 ) 2 i γ 2 i ρ i i 2 γ I ρ 22 ,
ρ ˙ 12 = i Δ ( t ) ρ 12 + i Ω 12 * 2 ( ρ 22 ρ 11 ) ( i γ 2 i + γ I ) ρ 12 ,
ρ ˙ 21 = i Δ ( t ) ρ 21 i Ω 12 2 ( ρ 22 ρ 11 ) ( i γ 2 i + γ I ) ρ 21 ,
ρ ˙ i i = 2 i γ 2 i ρ 22 2 i γ i 1 ρ i i .
Δ ( t ) = Δ 0 + S ( t )
Δ ( t ) = E 2 E 1 2 ω p + S 2 ( t ) S 1 ( t ) ,
Ω 12 = i Ω 1 i Ω i 2 2 Δ 1 i ,
Ω 12 = C 12 I 1 I 2 ,
S j = 1 2 c ε 0 i j | α ( ω ) | i I ( t ) .
S j = i | μ j i | 2 4 2 Δ j i E 2 ,
S 12 = S 2 S 1 = i ( Ω 2 i 2 4 Δ 2 i Ω 1 i 2 4 Δ 1 i ) .
S = P ( 0 ) P ( Δ ) ,
Ω ( t ) = Ω 0 I ( t ) ,
S ( t ) = S 0 I ( t ) ,
Γ ( t ) = Γ 0 I ( t ) ,
ν = ν 0 ( 1 v / c ) ,
N ( v ) = 1 α π 1 / 2 e m v 2 / 2 k T d v ,
I ( ν ) = I o exp [ ( m c 2 2 k T ) ( ν ν o ) 2 ν o 2 ] ,
ν 1 = ν 10 ( 1 v / c ) ,
ν 2 = ν 20 ( 1 + v / c ) ,
ν 1 + ν 2 = ( ν 10 + ν 20 ) + ( v / c ) ( ν 20 ν 10 ) .
ν 1 + ν 2 = ν 10 + ν 20 .

Metrics