Abstract

We applied oblique-incidence reflectivity difference microscopes (a form of polarization-modulated nulling ellipsometry) to detection of biomolecular microarrays without external labeling in a study of protein reactions with surface-immobilized targets. We show that the optical reflectivity difference signals can be quantitatively related to changes in surface mass density of molecular layers as a result of the reactions. Our experimental results demonstrate the feasibility of using oblique-incidence reflectivity difference microscopes for high-throughput proteomics research such as screening unlabeled protein probes against libraries of surface-immobilized small molecules.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kodadek, “Protein microarrays: prospects and problems,” Chem. Biol. 8, 105-115 (2001).
  2. G. MacBeath, “Protein microarrays and proteomics,” Nat. Genet. 32, 526-532 (2002).
  3. M. Schena, Microarray Analysis (Wiley, 2003).
  4. B. B. Haab, M. J. Dunham, and P. O. Brown, “Protein microarrays for highly parallel detection and quantification of specific proteins and antibodies in complex solutions,” Genome Biol. 2, research0004.1 (2001).
    [CrossRef]
  5. J. C. Milleret al., “Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers,” Proteomics 3, 56-63 (2003).
  6. Q. Xu, S. Miyamoto, and K. S. Lam, “A novel approach to chemical microarray using ketone-modified macromolecular scaffolds: application in micro cell-adhesion assay,” Mol. Divers. 8, 301-310 (2004).
  7. S. P. Gygiet al., “Correlation between protein and mRNA abundance in yeast,” Mol. Cell Biol. 19, 1720-1730 (1999).
  8. G. MacBeath and S. L. Schreiber, “Printing proteins as microarrays for high-throughput function determination,” Science 289, 1760-1763 (2000).
  9. H. Zhuet al., “Global analysis of protein activities using proteome chips,” Science 293, 2101-2105 (2001).
    [CrossRef]
  10. J. P. Landry, X. D. Zhu, J. P. Gregg and X. W. Guo, “Detection of biomolecular microarrays without fluorescent-labeling agents,” in Microarrays and Combinatorial Techniques: Design, Fabrication, and Analysis II, D. V. Nicolau and R. Raghavachari, eds., Proc. SPIE 5328, 121-128 (2004).
  11. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1987).
  12. H. Arwin, “Ellipsometry,” in ,Physical Chemistry of Biological Interfaces, A. Baszkin and W. Norde, eds. (Marcel Dekker, 2000), pp. 577-607.
  13. A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1-8 (1996).
  14. X. D. Zhuet al., “Epitaxial growth of SrTiO3 on SrTiO3(001) using an oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514-2519 (1998).
  15. P. Thomaset al., “An oblique-incidence optical reflectivity difference and LEED study of rare-gas growth on a lattice-mismatched metal substrate,” Appl. Phys. A 79, 131-137(2004).
  16. W. Schwarzacher, J. Gray, and X. D. Zhu, “Oblique incidence reflectivity difference as an in situ probe of Co electrodeposition on polycrystalline Au,” Electrochem. Solid-State Lett. 6, C73-C76 (2003).
    [CrossRef]
  17. J. P. Landry, X. D. Zhu, and J. P. Gregg, “Label-free detection of microarrays of biomolecules by oblique-incidence reflectivity difference microscopy,” Opt. Lett. 29, 581-583 (2004).
    [CrossRef]
  18. X. D. Zhu, “Oblique-incidence optical reflectivity difference from a rough film of crystalline material,” Phys. Rev. B . 69, 115407-1-115407-5 (2004).
  19. J. P. Landry, J. Gray, M. K. O'Toole, and X. D. Zhu, “Incidence-angle dependence of optical reflectivity difference from an ultrathin film on solid surface,” Opt. Lett. 31, 531-533 (2006).
    [CrossRef]
  20. X. D. Zhu, “Comparison of two optical techniques for label-free detection of biomolecular microarrays on solids,” Opt. Commun. 259, 751-753 (2006).
    [CrossRef]
  21. H. A. Sober, ed., Handbook of Biochemistry (CRC, 1970).
  22. H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci. 13, 2825-2828 (2004).
    [CrossRef]
  23. J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759-1772 (1978).
    [CrossRef]
  24. V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46, 489-492 (1998);
    [CrossRef]
  25. L. S. Junget al., “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
    [CrossRef]
  26. B.A. Rozenberg, “Kinetics, thermodynamics and mechanism of reactions epoxy oligomers with amines,” in Epoxy Resins and Composites II Advances in Polymer Sciences, Vol. 75, K. Dušek, ed. (Springer-Verlag, 1986), pp. 115-165.
  27. C. G. Goelander and E. Kiss, “Protein adsorption on functionalized and ESCA-characterized polymer films studies by ellipsometry,” J. Colloid Interface Sci. 121, 240-253 (1988).
    [CrossRef]
  28. B. D. Fair and A. M. Jamieson, “Studies of protein adsorption on polystyrene latex surfaces,” J. Colloid Interface Sci. 77, 525-534 (1980).
    [CrossRef]
  29. A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14, 393-403 (1980).
    [CrossRef]
  30. W. A. Hendricksonet al., “Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation,” Proc. Natl. Acad. Sci. 86, 2190-2194 (1989).
  31. P. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85-88 (1989).
    [CrossRef]
  32. X. D. Zhuet al., “Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in microarray format,” Appl. Opt. 46, 1890-1895(2007).
    [CrossRef]
  33. J. L. Oncley, G. Scatchard, and A. Brown, “Physicochemical characteristics of certain of the proteins of normal human plasma,” J. Phys. Colloid Chem. 51, 184-198 (1947).
    [CrossRef]
  34. J. L. Oncley, “The investigation of proteins by dielectric measurements,” Chem. Rev. 30, 433-450 (1942).
    [CrossRef]
  35. A. K. Wright and M. R. Thompson, “Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence,” Biophys. J. 15, 137-141 (1975).
  36. P. G. Squire, P. Moser, and C. T. O'Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry 7, 4261-4272 (1968).
  37. X. M. He and D. C. Carter, “Atomic structure and chemistry of human serum albumin,” Nature 358, 209-215 (1992).
  38. L. J. Harris, S. B. Larson, K. W. Hasel, and A. McPherson, “Refined structure of an intact IgG2a monoclonal antibody,” Biochemistry 36, 1581-1597 (1997).
  39. S. Sugioet al., “Crystal structure of human serum albumin at 2.5 Å° resolution,” Protein Eng. 12, 439-446 (1999).
    [CrossRef]

2007 (1)

2006 (2)

J. P. Landry, J. Gray, M. K. O'Toole, and X. D. Zhu, “Incidence-angle dependence of optical reflectivity difference from an ultrathin film on solid surface,” Opt. Lett. 31, 531-533 (2006).
[CrossRef]

X. D. Zhu, “Comparison of two optical techniques for label-free detection of biomolecular microarrays on solids,” Opt. Commun. 259, 751-753 (2006).
[CrossRef]

2004 (6)

H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci. 13, 2825-2828 (2004).
[CrossRef]

Q. Xu, S. Miyamoto, and K. S. Lam, “A novel approach to chemical microarray using ketone-modified macromolecular scaffolds: application in micro cell-adhesion assay,” Mol. Divers. 8, 301-310 (2004).

J. P. Landry, X. D. Zhu, J. P. Gregg and X. W. Guo, “Detection of biomolecular microarrays without fluorescent-labeling agents,” in Microarrays and Combinatorial Techniques: Design, Fabrication, and Analysis II, D. V. Nicolau and R. Raghavachari, eds., Proc. SPIE 5328, 121-128 (2004).

P. Thomaset al., “An oblique-incidence optical reflectivity difference and LEED study of rare-gas growth on a lattice-mismatched metal substrate,” Appl. Phys. A 79, 131-137(2004).

X. D. Zhu, “Oblique-incidence optical reflectivity difference from a rough film of crystalline material,” Phys. Rev. B . 69, 115407-1-115407-5 (2004).

J. P. Landry, X. D. Zhu, and J. P. Gregg, “Label-free detection of microarrays of biomolecules by oblique-incidence reflectivity difference microscopy,” Opt. Lett. 29, 581-583 (2004).
[CrossRef]

2003 (3)

W. Schwarzacher, J. Gray, and X. D. Zhu, “Oblique incidence reflectivity difference as an in situ probe of Co electrodeposition on polycrystalline Au,” Electrochem. Solid-State Lett. 6, C73-C76 (2003).
[CrossRef]

J. C. Milleret al., “Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers,” Proteomics 3, 56-63 (2003).

M. Schena, Microarray Analysis (Wiley, 2003).

2002 (1)

G. MacBeath, “Protein microarrays and proteomics,” Nat. Genet. 32, 526-532 (2002).

2001 (3)

T. Kodadek, “Protein microarrays: prospects and problems,” Chem. Biol. 8, 105-115 (2001).

B. B. Haab, M. J. Dunham, and P. O. Brown, “Protein microarrays for highly parallel detection and quantification of specific proteins and antibodies in complex solutions,” Genome Biol. 2, research0004.1 (2001).
[CrossRef]

H. Zhuet al., “Global analysis of protein activities using proteome chips,” Science 293, 2101-2105 (2001).
[CrossRef]

2000 (2)

H. Arwin, “Ellipsometry,” in ,Physical Chemistry of Biological Interfaces, A. Baszkin and W. Norde, eds. (Marcel Dekker, 2000), pp. 577-607.

G. MacBeath and S. L. Schreiber, “Printing proteins as microarrays for high-throughput function determination,” Science 289, 1760-1763 (2000).

1999 (2)

S. P. Gygiet al., “Correlation between protein and mRNA abundance in yeast,” Mol. Cell Biol. 19, 1720-1730 (1999).

S. Sugioet al., “Crystal structure of human serum albumin at 2.5 Å° resolution,” Protein Eng. 12, 439-446 (1999).
[CrossRef]

1998 (3)

X. D. Zhuet al., “Epitaxial growth of SrTiO3 on SrTiO3(001) using an oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514-2519 (1998).

V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46, 489-492 (1998);
[CrossRef]

L. S. Junget al., “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
[CrossRef]

1997 (1)

L. J. Harris, S. B. Larson, K. W. Hasel, and A. McPherson, “Refined structure of an intact IgG2a monoclonal antibody,” Biochemistry 36, 1581-1597 (1997).

1996 (1)

A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1-8 (1996).

1992 (1)

X. M. He and D. C. Carter, “Atomic structure and chemistry of human serum albumin,” Nature 358, 209-215 (1992).

1989 (2)

W. A. Hendricksonet al., “Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation,” Proc. Natl. Acad. Sci. 86, 2190-2194 (1989).

P. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85-88 (1989).
[CrossRef]

1988 (1)

C. G. Goelander and E. Kiss, “Protein adsorption on functionalized and ESCA-characterized polymer films studies by ellipsometry,” J. Colloid Interface Sci. 121, 240-253 (1988).
[CrossRef]

1987 (1)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1987).

1986 (1)

B.A. Rozenberg, “Kinetics, thermodynamics and mechanism of reactions epoxy oligomers with amines,” in Epoxy Resins and Composites II Advances in Polymer Sciences, Vol. 75, K. Dušek, ed. (Springer-Verlag, 1986), pp. 115-165.

1980 (2)

B. D. Fair and A. M. Jamieson, “Studies of protein adsorption on polystyrene latex surfaces,” J. Colloid Interface Sci. 77, 525-534 (1980).
[CrossRef]

A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14, 393-403 (1980).
[CrossRef]

1978 (1)

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759-1772 (1978).
[CrossRef]

1975 (1)

A. K. Wright and M. R. Thompson, “Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence,” Biophys. J. 15, 137-141 (1975).

1970 (1)

H. A. Sober, ed., Handbook of Biochemistry (CRC, 1970).

1968 (1)

P. G. Squire, P. Moser, and C. T. O'Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry 7, 4261-4272 (1968).

1947 (1)

J. L. Oncley, G. Scatchard, and A. Brown, “Physicochemical characteristics of certain of the proteins of normal human plasma,” J. Phys. Colloid Chem. 51, 184-198 (1947).
[CrossRef]

1942 (1)

J. L. Oncley, “The investigation of proteins by dielectric measurements,” Chem. Rev. 30, 433-450 (1942).
[CrossRef]

Arwin, H.

H. Arwin, “Ellipsometry,” in ,Physical Chemistry of Biological Interfaces, A. Baszkin and W. Norde, eds. (Marcel Dekker, 2000), pp. 577-607.

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1987).

Ball, V.

V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46, 489-492 (1998);
[CrossRef]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1987).

Baszkin, A.

A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14, 393-403 (1980).
[CrossRef]

Benjamins, J.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759-1772 (1978).
[CrossRef]

Brown, A.

J. L. Oncley, G. Scatchard, and A. Brown, “Physicochemical characteristics of certain of the proteins of normal human plasma,” J. Phys. Colloid Chem. 51, 184-198 (1947).
[CrossRef]

Brown, P. O.

B. B. Haab, M. J. Dunham, and P. O. Brown, “Protein microarrays for highly parallel detection and quantification of specific proteins and antibodies in complex solutions,” Genome Biol. 2, research0004.1 (2001).
[CrossRef]

Carter, D. C.

X. M. He and D. C. Carter, “Atomic structure and chemistry of human serum albumin,” Nature 358, 209-215 (1992).

Craievich, A. F.

H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci. 13, 2825-2828 (2004).
[CrossRef]

De Feijter, J. A.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759-1772 (1978).
[CrossRef]

Dunham, M. J.

B. B. Haab, M. J. Dunham, and P. O. Brown, “Protein microarrays for highly parallel detection and quantification of specific proteins and antibodies in complex solutions,” Genome Biol. 2, research0004.1 (2001).
[CrossRef]

Fair, B. D.

B. D. Fair and A. M. Jamieson, “Studies of protein adsorption on polystyrene latex surfaces,” J. Colloid Interface Sci. 77, 525-534 (1980).
[CrossRef]

Fischer, H.

H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci. 13, 2825-2828 (2004).
[CrossRef]

Goelander, C. G.

C. G. Goelander and E. Kiss, “Protein adsorption on functionalized and ESCA-characterized polymer films studies by ellipsometry,” J. Colloid Interface Sci. 121, 240-253 (1988).
[CrossRef]

Gray, J.

J. P. Landry, J. Gray, M. K. O'Toole, and X. D. Zhu, “Incidence-angle dependence of optical reflectivity difference from an ultrathin film on solid surface,” Opt. Lett. 31, 531-533 (2006).
[CrossRef]

W. Schwarzacher, J. Gray, and X. D. Zhu, “Oblique incidence reflectivity difference as an in situ probe of Co electrodeposition on polycrystalline Au,” Electrochem. Solid-State Lett. 6, C73-C76 (2003).
[CrossRef]

Gregg, J. P.

J. P. Landry, X. D. Zhu, J. P. Gregg and X. W. Guo, “Detection of biomolecular microarrays without fluorescent-labeling agents,” in Microarrays and Combinatorial Techniques: Design, Fabrication, and Analysis II, D. V. Nicolau and R. Raghavachari, eds., Proc. SPIE 5328, 121-128 (2004).

J. P. Landry, X. D. Zhu, and J. P. Gregg, “Label-free detection of microarrays of biomolecules by oblique-incidence reflectivity difference microscopy,” Opt. Lett. 29, 581-583 (2004).
[CrossRef]

Guo, X. W.

J. P. Landry, X. D. Zhu, J. P. Gregg and X. W. Guo, “Detection of biomolecular microarrays without fluorescent-labeling agents,” in Microarrays and Combinatorial Techniques: Design, Fabrication, and Analysis II, D. V. Nicolau and R. Raghavachari, eds., Proc. SPIE 5328, 121-128 (2004).

Gygi, S. P.

S. P. Gygiet al., “Correlation between protein and mRNA abundance in yeast,” Mol. Cell Biol. 19, 1720-1730 (1999).

Haab, B. B.

B. B. Haab, M. J. Dunham, and P. O. Brown, “Protein microarrays for highly parallel detection and quantification of specific proteins and antibodies in complex solutions,” Genome Biol. 2, research0004.1 (2001).
[CrossRef]

Harris, L. J.

L. J. Harris, S. B. Larson, K. W. Hasel, and A. McPherson, “Refined structure of an intact IgG2a monoclonal antibody,” Biochemistry 36, 1581-1597 (1997).

Hasel, K. W.

L. J. Harris, S. B. Larson, K. W. Hasel, and A. McPherson, “Refined structure of an intact IgG2a monoclonal antibody,” Biochemistry 36, 1581-1597 (1997).

He, X. M.

X. M. He and D. C. Carter, “Atomic structure and chemistry of human serum albumin,” Nature 358, 209-215 (1992).

Hendrickson, W. A.

W. A. Hendricksonet al., “Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation,” Proc. Natl. Acad. Sci. 86, 2190-2194 (1989).

Jamieson, A. M.

B. D. Fair and A. M. Jamieson, “Studies of protein adsorption on polystyrene latex surfaces,” J. Colloid Interface Sci. 77, 525-534 (1980).
[CrossRef]

Jung, L. S.

L. S. Junget al., “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
[CrossRef]

Kiss, E.

C. G. Goelander and E. Kiss, “Protein adsorption on functionalized and ESCA-characterized polymer films studies by ellipsometry,” J. Colloid Interface Sci. 121, 240-253 (1988).
[CrossRef]

Kodadek, T.

T. Kodadek, “Protein microarrays: prospects and problems,” Chem. Biol. 8, 105-115 (2001).

Lam, K. S.

Q. Xu, S. Miyamoto, and K. S. Lam, “A novel approach to chemical microarray using ketone-modified macromolecular scaffolds: application in micro cell-adhesion assay,” Mol. Divers. 8, 301-310 (2004).

Landry, J. P.

J. P. Landry, J. Gray, M. K. O'Toole, and X. D. Zhu, “Incidence-angle dependence of optical reflectivity difference from an ultrathin film on solid surface,” Opt. Lett. 31, 531-533 (2006).
[CrossRef]

J. P. Landry, X. D. Zhu, J. P. Gregg and X. W. Guo, “Detection of biomolecular microarrays without fluorescent-labeling agents,” in Microarrays and Combinatorial Techniques: Design, Fabrication, and Analysis II, D. V. Nicolau and R. Raghavachari, eds., Proc. SPIE 5328, 121-128 (2004).

J. P. Landry, X. D. Zhu, and J. P. Gregg, “Label-free detection of microarrays of biomolecules by oblique-incidence reflectivity difference microscopy,” Opt. Lett. 29, 581-583 (2004).
[CrossRef]

Larson, S. B.

L. J. Harris, S. B. Larson, K. W. Hasel, and A. McPherson, “Refined structure of an intact IgG2a monoclonal antibody,” Biochemistry 36, 1581-1597 (1997).

Lyman, D. J.

A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14, 393-403 (1980).
[CrossRef]

MacBeath, G.

G. MacBeath, “Protein microarrays and proteomics,” Nat. Genet. 32, 526-532 (2002).

G. MacBeath and S. L. Schreiber, “Printing proteins as microarrays for high-throughput function determination,” Science 289, 1760-1763 (2000).

McPherson, A.

L. J. Harris, S. B. Larson, K. W. Hasel, and A. McPherson, “Refined structure of an intact IgG2a monoclonal antibody,” Biochemistry 36, 1581-1597 (1997).

Miller, J. C.

J. C. Milleret al., “Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers,” Proteomics 3, 56-63 (2003).

Miyamoto, S.

Q. Xu, S. Miyamoto, and K. S. Lam, “A novel approach to chemical microarray using ketone-modified macromolecular scaffolds: application in micro cell-adhesion assay,” Mol. Divers. 8, 301-310 (2004).

Moser, P.

P. G. Squire, P. Moser, and C. T. O'Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry 7, 4261-4272 (1968).

Ohlendorf, D.

P. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85-88 (1989).
[CrossRef]

O'Konski, C. T.

P. G. Squire, P. Moser, and C. T. O'Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry 7, 4261-4272 (1968).

Oncley, J. L.

J. L. Oncley, G. Scatchard, and A. Brown, “Physicochemical characteristics of certain of the proteins of normal human plasma,” J. Phys. Colloid Chem. 51, 184-198 (1947).
[CrossRef]

J. L. Oncley, “The investigation of proteins by dielectric measurements,” Chem. Rev. 30, 433-450 (1942).
[CrossRef]

O'Toole, M. K.

Polikarpov, I.

H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci. 13, 2825-2828 (2004).
[CrossRef]

Ramsden, J. J.

V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46, 489-492 (1998);
[CrossRef]

Rozenberg, A.

B.A. Rozenberg, “Kinetics, thermodynamics and mechanism of reactions epoxy oligomers with amines,” in Epoxy Resins and Composites II Advances in Polymer Sciences, Vol. 75, K. Dušek, ed. (Springer-Verlag, 1986), pp. 115-165.

Salemme, F.

P. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85-88 (1989).
[CrossRef]

Scatchard, G.

J. L. Oncley, G. Scatchard, and A. Brown, “Physicochemical characteristics of certain of the proteins of normal human plasma,” J. Phys. Colloid Chem. 51, 184-198 (1947).
[CrossRef]

Schena, M.

M. Schena, Microarray Analysis (Wiley, 2003).

Schreiber, S. L.

G. MacBeath and S. L. Schreiber, “Printing proteins as microarrays for high-throughput function determination,” Science 289, 1760-1763 (2000).

Schwarzacher, W.

W. Schwarzacher, J. Gray, and X. D. Zhu, “Oblique incidence reflectivity difference as an in situ probe of Co electrodeposition on polycrystalline Au,” Electrochem. Solid-State Lett. 6, C73-C76 (2003).
[CrossRef]

Squire, P. G.

P. G. Squire, P. Moser, and C. T. O'Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry 7, 4261-4272 (1968).

Sugio, S.

S. Sugioet al., “Crystal structure of human serum albumin at 2.5 Å° resolution,” Protein Eng. 12, 439-446 (1999).
[CrossRef]

Thomas, P.

P. Thomaset al., “An oblique-incidence optical reflectivity difference and LEED study of rare-gas growth on a lattice-mismatched metal substrate,” Appl. Phys. A 79, 131-137(2004).

Thompson, M. R.

A. K. Wright and M. R. Thompson, “Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence,” Biophys. J. 15, 137-141 (1975).

Veer, F. A.

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759-1772 (1978).
[CrossRef]

Weber, P.

P. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85-88 (1989).
[CrossRef]

Wendoloski, J.

P. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85-88 (1989).
[CrossRef]

Wong, A.

A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1-8 (1996).

Wright, A. K.

A. K. Wright and M. R. Thompson, “Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence,” Biophys. J. 15, 137-141 (1975).

Xu, Q.

Q. Xu, S. Miyamoto, and K. S. Lam, “A novel approach to chemical microarray using ketone-modified macromolecular scaffolds: application in micro cell-adhesion assay,” Mol. Divers. 8, 301-310 (2004).

Zhu, H.

H. Zhuet al., “Global analysis of protein activities using proteome chips,” Science 293, 2101-2105 (2001).
[CrossRef]

Zhu, X. D.

X. D. Zhuet al., “Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in microarray format,” Appl. Opt. 46, 1890-1895(2007).
[CrossRef]

J. P. Landry, J. Gray, M. K. O'Toole, and X. D. Zhu, “Incidence-angle dependence of optical reflectivity difference from an ultrathin film on solid surface,” Opt. Lett. 31, 531-533 (2006).
[CrossRef]

X. D. Zhu, “Comparison of two optical techniques for label-free detection of biomolecular microarrays on solids,” Opt. Commun. 259, 751-753 (2006).
[CrossRef]

J. P. Landry, X. D. Zhu, J. P. Gregg and X. W. Guo, “Detection of biomolecular microarrays without fluorescent-labeling agents,” in Microarrays and Combinatorial Techniques: Design, Fabrication, and Analysis II, D. V. Nicolau and R. Raghavachari, eds., Proc. SPIE 5328, 121-128 (2004).

X. D. Zhu, “Oblique-incidence optical reflectivity difference from a rough film of crystalline material,” Phys. Rev. B . 69, 115407-1-115407-5 (2004).

J. P. Landry, X. D. Zhu, and J. P. Gregg, “Label-free detection of microarrays of biomolecules by oblique-incidence reflectivity difference microscopy,” Opt. Lett. 29, 581-583 (2004).
[CrossRef]

W. Schwarzacher, J. Gray, and X. D. Zhu, “Oblique incidence reflectivity difference as an in situ probe of Co electrodeposition on polycrystalline Au,” Electrochem. Solid-State Lett. 6, C73-C76 (2003).
[CrossRef]

X. D. Zhuet al., “Epitaxial growth of SrTiO3 on SrTiO3(001) using an oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514-2519 (1998).

A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1-8 (1996).

Appl. Opt. (1)

Appl. Phys. A (2)

P. Thomaset al., “An oblique-incidence optical reflectivity difference and LEED study of rare-gas growth on a lattice-mismatched metal substrate,” Appl. Phys. A 79, 131-137(2004).

A. Wong and X. D. Zhu, “An optical differential reflectance study of adsorption and desorption of xenon and deuterium on Ni(111),” Appl. Phys. A 63, 1-8 (1996).

Biochemistry (2)

P. G. Squire, P. Moser, and C. T. O'Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry 7, 4261-4272 (1968).

L. J. Harris, S. B. Larson, K. W. Hasel, and A. McPherson, “Refined structure of an intact IgG2a monoclonal antibody,” Biochemistry 36, 1581-1597 (1997).

Biophys. J. (1)

A. K. Wright and M. R. Thompson, “Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence,” Biophys. J. 15, 137-141 (1975).

Biopolymers (2)

J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers 17, 1759-1772 (1978).
[CrossRef]

V. Ball and J. J. Ramsden, “Buffer dependence of refractive index increments of protein solutions,” Biopolymers 46, 489-492 (1998);
[CrossRef]

Chem. Biol. (1)

T. Kodadek, “Protein microarrays: prospects and problems,” Chem. Biol. 8, 105-115 (2001).

Chem. Rev. (1)

J. L. Oncley, “The investigation of proteins by dielectric measurements,” Chem. Rev. 30, 433-450 (1942).
[CrossRef]

Electrochem. Solid-State Lett. (1)

W. Schwarzacher, J. Gray, and X. D. Zhu, “Oblique incidence reflectivity difference as an in situ probe of Co electrodeposition on polycrystalline Au,” Electrochem. Solid-State Lett. 6, C73-C76 (2003).
[CrossRef]

Genome Biol. (1)

B. B. Haab, M. J. Dunham, and P. O. Brown, “Protein microarrays for highly parallel detection and quantification of specific proteins and antibodies in complex solutions,” Genome Biol. 2, research0004.1 (2001).
[CrossRef]

J. Biomed. Mater. Res. (1)

A. Baszkin and D. J. Lyman, “The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption,” J. Biomed. Mater. Res. 14, 393-403 (1980).
[CrossRef]

J. Colloid Interface Sci. (2)

C. G. Goelander and E. Kiss, “Protein adsorption on functionalized and ESCA-characterized polymer films studies by ellipsometry,” J. Colloid Interface Sci. 121, 240-253 (1988).
[CrossRef]

B. D. Fair and A. M. Jamieson, “Studies of protein adsorption on polystyrene latex surfaces,” J. Colloid Interface Sci. 77, 525-534 (1980).
[CrossRef]

J. Phys. Colloid Chem. (1)

J. L. Oncley, G. Scatchard, and A. Brown, “Physicochemical characteristics of certain of the proteins of normal human plasma,” J. Phys. Colloid Chem. 51, 184-198 (1947).
[CrossRef]

Langmuir (1)

L. S. Junget al., “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636-5648 (1998).
[CrossRef]

Mol. Cell Biol. (1)

S. P. Gygiet al., “Correlation between protein and mRNA abundance in yeast,” Mol. Cell Biol. 19, 1720-1730 (1999).

Mol. Divers. (1)

Q. Xu, S. Miyamoto, and K. S. Lam, “A novel approach to chemical microarray using ketone-modified macromolecular scaffolds: application in micro cell-adhesion assay,” Mol. Divers. 8, 301-310 (2004).

Nat. Genet. (1)

G. MacBeath, “Protein microarrays and proteomics,” Nat. Genet. 32, 526-532 (2002).

Nature (1)

X. M. He and D. C. Carter, “Atomic structure and chemistry of human serum albumin,” Nature 358, 209-215 (1992).

Opt. Commun. (1)

X. D. Zhu, “Comparison of two optical techniques for label-free detection of biomolecular microarrays on solids,” Opt. Commun. 259, 751-753 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

X. D. Zhuet al., “Epitaxial growth of SrTiO3 on SrTiO3(001) using an oblique-incidence reflectance-difference technique,” Phys. Rev. B 57, 2514-2519 (1998).

X. D. Zhu, “Oblique-incidence optical reflectivity difference from a rough film of crystalline material,” Phys. Rev. B . 69, 115407-1-115407-5 (2004).

Proc. Natl. Acad. Sci. (1)

W. A. Hendricksonet al., “Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation,” Proc. Natl. Acad. Sci. 86, 2190-2194 (1989).

Protein Eng. (1)

S. Sugioet al., “Crystal structure of human serum albumin at 2.5 Å° resolution,” Protein Eng. 12, 439-446 (1999).
[CrossRef]

Protein Sci. (1)

H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is a molecular-weight-dependent function,” Protein Sci. 13, 2825-2828 (2004).
[CrossRef]

Proteomics (1)

J. C. Milleret al., “Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers,” Proteomics 3, 56-63 (2003).

Science (3)

G. MacBeath and S. L. Schreiber, “Printing proteins as microarrays for high-throughput function determination,” Science 289, 1760-1763 (2000).

H. Zhuet al., “Global analysis of protein activities using proteome chips,” Science 293, 2101-2105 (2001).
[CrossRef]

P. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85-88 (1989).
[CrossRef]

Other (6)

B.A. Rozenberg, “Kinetics, thermodynamics and mechanism of reactions epoxy oligomers with amines,” in Epoxy Resins and Composites II Advances in Polymer Sciences, Vol. 75, K. Dušek, ed. (Springer-Verlag, 1986), pp. 115-165.

J. P. Landry, X. D. Zhu, J. P. Gregg and X. W. Guo, “Detection of biomolecular microarrays without fluorescent-labeling agents,” in Microarrays and Combinatorial Techniques: Design, Fabrication, and Analysis II, D. V. Nicolau and R. Raghavachari, eds., Proc. SPIE 5328, 121-128 (2004).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1987).

H. Arwin, “Ellipsometry,” in ,Physical Chemistry of Biological Interfaces, A. Baszkin and W. Norde, eds. (Marcel Dekker, 2000), pp. 577-607.

M. Schena, Microarray Analysis (Wiley, 2003).

H. A. Sober, ed., Handbook of Biochemistry (CRC, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Sketch of a scanning OI-RD microscope for microarray detection. The microarray-bearing glass slide is mounted on a translation stage that can move along the x and y directions. PEM, photoelastic modulator for polarization modulation; PS, variable phase shifter; L1, focusing lens for illumination; L2, imaging lens for detection; A, polarization analyzer; PD, single-element or multielement photodiode detector.

Fig. 2
Fig. 2

Im { Δ p Δ s } images of a target protein microarray. Dilution series of unlabeled human IgG (HM), mouse IgG (MS), rabbit IgG (RB), and bovine serum albumin (BSA) are printed in triplicate. The dashed lines separate the replicates. The optical signals are also converted to the surface mass densities of the targets Γ target . (a)  Im { Δ p Δ s } image of the microarray after washing to remove excess unbound protein and buffer precipitates, with the optical signal zeroed on the unprinted part of the surface; (b)  Im { Δ p Δ s } image of the microarray after the BSA-blocking treatment, with the optical signal zeroed on the originally unprinted but now BSA-blocked part of the surface; (c) the differential image, proportional to Γ blocking BSA Θ target , obtained by subtracting (b) from (a). The intensity or, equivalently, target coverage variation within each spot, is due to the variation in wetting property of a functionalized glass slide across the spot in combination with the rapid drying process right after printing.

Fig. 3
Fig. 3

Averaged Im { Δ p Δ s } from the printed targets on the washed microarray versus printing concentrations. The corresponding surface mass density Γ target is shown on the right side. Each point is the mean of the three replicates. The error bars show the standard deviations of the signals from the replicates (due to the microarray printing process). The curves are guides for the eyes. The insets illustrate the proposed evolution of the target (IgG and BSA) coverage and orientation, inferred from the surface mass densities.

Fig. 4
Fig. 4

Surface mass density Γ blocking BSA of the BSA-blocking layer multiplied by the target coverage Θ target versus printing concentration, obtained from Fig. 2c. Each point is the average of the three replicate spots. The error bars show the standard deviations.

Fig. 5
Fig. 5

Im { Δ p Δ s } and fluorescence images of a four-target microarray after reaction with unlabeled goat antibody against the mouse IgG (MS) and Cy3-labeled goat antibody against the human IgG (HM). (a)  Im { Δ p Δ s } image of the microarray with the optical signal zeroed on the originally unprinted but subsequently BSA-blocked part of the surface; (b) the differential image, δ Im { Δ p Δ s } , obtained by subtracting Fig. 2b from Fig. 5a (the corresponding surface mass density of the captured goat antibody probes computed from δ Im { Δ p Δ s } is also shown); (c) the Cy3-fluorescence image of the microarray.

Fig. 6
Fig. 6

(a) Change in Im { Δ p Δ s } and the corresponding surface mass density of the captured goat antibody probes Γ goatIgG versus target printing concentration (from Fig. 5b) after the reactions with unlabeled goat anti-mouse IgG and Cy3-labeled goat anti- human IgG; (b) the Cy3-fluorescence yield after the same reaction (from Fig. 5c).

Fig. 7
Fig. 7

(a) The differential Im { Δ p Δ s } image of a four-target microarray after a reaction with the unlabeled goat antibodies against the rabbit IgG, obtained by subtracting the Im { Δ p Δ s } image taken after the BSA-blocking step from the image taken after the reaction. (b) The differential Im { Δ p Δ s } image of the same four-target microarray after the subsequent reaction with the unlabeled goat antibodies against the mouse IgG (obtained by subtracting the Im { Δ p Δ s } image taken after the first reaction from the image taken after the second reaction).

Fig. 8
Fig. 8

(a) Surface mass density Γ goatIgG of the captured goat antibody probes against the rabbit IgG versus target printing concentration, after the first reaction (from Fig. 7a). (b) Surface mass density Γ goatIgG of the captured goat antibody probes against the mouse IgG versus target printing concentration, after the second reaction (from Fig. 7b).

Fig. 9
Fig. 9

(a)  Im { Δ p Δ s } image of a three-target protein microarray (i.e., human IgG (HM), biotinylated BSA (biotin–BSA), and unmodified BSA) after BSA blocking treatment. All the targets are printed at the same concentration of 4.55 μM . (b)  Im { Δ p Δ s } image of the three-target protein microarray after reaction with streptavidin. (c) The differential image, δ Im { Δ p Δ s } , obtained by subtracting (a) from (b). The surface mass density of the captured streptavidin is computed from δ Im { Δ p Δ s } using Eq. (12).

Fig. 10
Fig. 10

Im { Δ p Δ s } image of a 800-spot BSA microarray acquired with a hybrid scanning OI-RD microscope. The image area is 6.5 mm × 12 mm , and the pixel size is 15 μm × 15 μm . Averaging for 2 ms at each pixel, the image takes 15 minutes to acquire.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δ p Δ s i [ 4 π ε s ( tan θ inc ) 2 cos θ inc ε 0 1 / 2 ( ε s ε 0 ) ( ε s / ε 0 ( tan θ inc ) 2 ) ] ( ε d ε s ) ( ε d ε 0 ) ε d ( d λ ) .
Im { Δ p Δ s } [ 4 π ε s ( tan θ inc ) 2 cos θ inc ε 0 1 / 2 ( ε s ε 0 ) ( ε s / ε 0 ( tan θ inc ) 2 ) ] ( ε d ε s ) ( ε d ε 0 ) ε d ( d λ ) .
Im { Δ p Δ s } α ( ε d , bulk ε s ) ( ε d , bulk ε 0 ) Θ ε d , bulk ( d λ ) ,
α [ 4 π ε s ( tan θ inc ) 2 cos θ inc ε 0 1 / 2 ( ε s ε 0 ) ( ε s / ε 0 ( tan θ inc ) 2 ) ] .
I ( Ω ) I max ( Ω ) sin ( Φ p 0 Φ s 0 + Φ P S + Im { Δ p Δ s } ) .
Im { Δ p Δ s } α ( ε taget ε s ) ( ε target ε 0 ) ε target ( Γ target ρ target λ ) .
Γ target = ( 4.98 × 10 5 g / cm 2 ) | Im { Δ p Δ s } | .
Im { Δ p Δ s } α [ ( ε target ε s ) ( ε target ε 0 ) ε target ( d target Θ target λ ) ( ε blocking BSA ε s ) ( ε blocking BSA ε 0 ) ε blocking BSA ( d blocking BSA Θ target λ ) ] ,
δ Im { Δ p Δ s } α ( ε blocking BSA ε s ) ( ε blocking BSA ε 0 ) ε blocking BSA ( Γ blocking BSA ρ blocking BSA λ ) Θ target ,
Γ blocking BSA Θ target = ( 5 × 10 5 g / cm 2 ) | δ Im { Δ p Δ s } | .
Γ goat IgG = ( 5 × 10 5 g / cm 2 ) | δ Im { Δ p Δ s } | .
δ Im { Δ p Δ s } α ( ε streptavidin ε s ) ( ε streptavidin ε 0 ) ε streptavidin ( Γ streptavidin ρ streptavidin λ ) .
Γ streptavidin = ( 1 × 10 5 g / cm 2 ) | δ Im { Δ p Δ s } | .
ε 1 ε + 2 = γ mol N b 3 ,
n solution 2 ( c ) 1 n solution 2 ( c ) + 2 = ( c ρ ) n 2 1 n 2 + 2 + ( 1 c ρ ) n buffer 2 1 n buffer 2 + 2 ,
n solution ( c ) n buffer + ( n n buffer ) ( c ρ ) .

Metrics