Abstract

A digital holographic interferometry setup used to measure radial vibrations along a rotating shaft is presented. A continuous Nd:YAG laser and a high-speed digital camera are used for recording the holograms. The shaft was polished optically smooth to avoid speckle noise from the rotating surface. The light reflected from the shaft was directed onto a diffuser which in turn was imaged by the holographic system. Simultaneous measurements with a laser vibrometer were performed at one point and comparisons between the signals showed good agreement. It is shown that different vibration components of a rotating shaft can be simultaneously measured with this technique.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Okuyama, N. Nosaka, and J. Aoki, “Radial motion measurement of a high-revolution spindle motor,” Measurement 40, 64-74 (2007).
    [CrossRef]
  2. A. Albrecht, S. S. Park, Y. Altintas, and G. Pritschow, “High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors,” Int. J. Mach. Tools Manuf. 45, 993-1008 (2005).
    [CrossRef]
  3. H.-K. Chang, J.-H. Kim, I. H. Kim, D. Y. Jang, and D. C. Han, “In-process surface roughness prediction using displacement signals from spindle motion,” Int. J. Mach. Tools Manuf. 47, 1021-1026 (2007).
    [CrossRef]
  4. M. Rantatalo, J.-O. Aidanpaa, B. Goransson, and P. Norman, “Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement,' Int. J. Mach. Tools Manuf. 47, 1034-1045 (2007).
    [CrossRef]
  5. O. Bhattacharyya, M. B. Jun, S. G. Kapoor, and R. E. DeVor, “The effects of process faults and misalignments on the cutting force system and hole quality in reaming,” Int. J. Mach. Tools Manuf. 46, 1281-1290 (2006).
    [CrossRef]
  6. R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling, and H. Nijmeijer, “Prediction of regenerative chatter by modelling and analysis of high-speed milling,” Int. J. Mach. Tools Manuf. 43, 1437-1446 (2003).
    [CrossRef]
  7. V. Gagnol, B. C. Bouzgarrou, P. Ray, and C. Barra, “Model-based chatter stability prediction for high-speed spindles,” Int. J. Mach. Tools Manuf. 47, 1176-1186 (2007).
    [CrossRef]
  8. M. Rantatalo, K. Tatar, and P. Norman, “Laser Doppler vibrometry measurements of a rotating milling machine spindle,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE Event Publications, 2004), pp. 231-240.
  9. K. Tatar, M. Rantatalo, and P. Gren, “Laser vibrometry measurements of an optically smooth rotating spindle,” Mech. Syst. Signal Process. 21, 1739-1745 (2007).
    [CrossRef]
  10. K. Tatar and P. Gren, “Measurement of milling tool vibrations during cutting using laser vibrometry,” Int. J. Mach. Tools Manuf. 48, 380-387 (2008).
    [CrossRef]
  11. S. J. Rothberg and J. R. Bell, “On the application of laser vibrometry to translational and rotational vibration measurements on rotating shafts,” Measurement 35, 201-210 (2004).
    [CrossRef]
  12. B. Halkon and S. J. Rothberg, “Automatic post-processing of laser vibrometry data for rotor vibration measurements,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE, 2004), 215-229.
  13. T. Kreis, Holographyc Interferometry: Principles and Methods, 1st ed. (Akademie Verlag, 1996), Vol. 1.
  14. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456-3462 (2006).
    [CrossRef] [PubMed]
  15. Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analyses of a digital hologram sequence,” Appl. Opt. 46, 5719-5727 (2007).
    [CrossRef] [PubMed]
  16. Y. Fu, R. M. Groves, G. Pedrini, and W. Osten, “Kinematic and deformation parameter measurement by spatiotemporal analysis of an interferogram sequence,” Appl. Opt. 46, 8645-8655 (2007).
    [CrossRef] [PubMed]
  17. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  18. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160 (1982).
    [CrossRef]
  19. H. O. Saldner, N.-E. Molin, and K. A. Stetson, “Fourier-transform evaluation of phase data in spatially phase-biased TV holograms,” Appl. Opt. 35, 332-336 (1996).
    [CrossRef] [PubMed]
  20. S. Schedin, “Digital holographic interferometry,” J. Holography Speckle 3, 1-17 (2006).
    [CrossRef]
  21. C. Perez-Lopez, F. Mendoza Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Appl. Opt. 40, 5106-5110 (2001).
    [CrossRef]
  22. C. Perez-Lopez and F. Mendoza Santoyo, “Rigid body motion removal by derotating digital holograms” Proc. SPIE 4419, 226-230 (2001).
    [CrossRef]
  23. P. Gren, “Pulsed TV holography combined with digital speckle photography restores lost interference phase,” Appl. Opt. 40, 2304-2309 (2001).
    [CrossRef]
  24. P. Gren, “Bending wave propagation in rotating objects measured by pulsed TV holography,” Appl. Opt. 41, 7237-7240 (2002).
    [CrossRef] [PubMed]
  25. G. Pedrini, I. Alexeenko, W. Osten, and U. Schnars, “On-line surveillance of a dynamic process by a moving system based on pulsed digital holographic interferometry,” Appl. Opt. 45, 935-943 (2006).
    [CrossRef] [PubMed]
  26. E. Kolenović, T. Kreis, C. von Kopylow, and W. Jüptner, “Determination of large-scale out-of-plane displacements in digital Fourier holography,” Appl. Opt. 46, 3118-3125 (2007).
    [CrossRef] [PubMed]
  27. S. J. Rothberg, J. R. Baker, and N. A. Halliwell, “Laser vibrometry: pseudo-vibration,” J. Sound Vib. 135, 516-522 (1989).
    [CrossRef]
  28. J. R. Bell and S. J. Rothberg, “Laser vibrometers and contacting transducers, target rotation and six degree-of-freedom vibration: what do we really measure?,” J. Sound Vib. 237, 245-261 (2000).
    [CrossRef]

2008 (1)

K. Tatar and P. Gren, “Measurement of milling tool vibrations during cutting using laser vibrometry,” Int. J. Mach. Tools Manuf. 48, 380-387 (2008).
[CrossRef]

2007 (8)

K. Tatar, M. Rantatalo, and P. Gren, “Laser vibrometry measurements of an optically smooth rotating spindle,” Mech. Syst. Signal Process. 21, 1739-1745 (2007).
[CrossRef]

Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analyses of a digital hologram sequence,” Appl. Opt. 46, 5719-5727 (2007).
[CrossRef] [PubMed]

Y. Fu, R. M. Groves, G. Pedrini, and W. Osten, “Kinematic and deformation parameter measurement by spatiotemporal analysis of an interferogram sequence,” Appl. Opt. 46, 8645-8655 (2007).
[CrossRef] [PubMed]

H.-K. Chang, J.-H. Kim, I. H. Kim, D. Y. Jang, and D. C. Han, “In-process surface roughness prediction using displacement signals from spindle motion,” Int. J. Mach. Tools Manuf. 47, 1021-1026 (2007).
[CrossRef]

M. Rantatalo, J.-O. Aidanpaa, B. Goransson, and P. Norman, “Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement,' Int. J. Mach. Tools Manuf. 47, 1034-1045 (2007).
[CrossRef]

E. Okuyama, N. Nosaka, and J. Aoki, “Radial motion measurement of a high-revolution spindle motor,” Measurement 40, 64-74 (2007).
[CrossRef]

V. Gagnol, B. C. Bouzgarrou, P. Ray, and C. Barra, “Model-based chatter stability prediction for high-speed spindles,” Int. J. Mach. Tools Manuf. 47, 1176-1186 (2007).
[CrossRef]

E. Kolenović, T. Kreis, C. von Kopylow, and W. Jüptner, “Determination of large-scale out-of-plane displacements in digital Fourier holography,” Appl. Opt. 46, 3118-3125 (2007).
[CrossRef] [PubMed]

2006 (4)

S. Schedin, “Digital holographic interferometry,” J. Holography Speckle 3, 1-17 (2006).
[CrossRef]

G. Pedrini, I. Alexeenko, W. Osten, and U. Schnars, “On-line surveillance of a dynamic process by a moving system based on pulsed digital holographic interferometry,” Appl. Opt. 45, 935-943 (2006).
[CrossRef] [PubMed]

O. Bhattacharyya, M. B. Jun, S. G. Kapoor, and R. E. DeVor, “The effects of process faults and misalignments on the cutting force system and hole quality in reaming,” Int. J. Mach. Tools Manuf. 46, 1281-1290 (2006).
[CrossRef]

G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456-3462 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Albrecht, S. S. Park, Y. Altintas, and G. Pritschow, “High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors,” Int. J. Mach. Tools Manuf. 45, 993-1008 (2005).
[CrossRef]

2004 (3)

M. Rantatalo, K. Tatar, and P. Norman, “Laser Doppler vibrometry measurements of a rotating milling machine spindle,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE Event Publications, 2004), pp. 231-240.

S. J. Rothberg and J. R. Bell, “On the application of laser vibrometry to translational and rotational vibration measurements on rotating shafts,” Measurement 35, 201-210 (2004).
[CrossRef]

B. Halkon and S. J. Rothberg, “Automatic post-processing of laser vibrometry data for rotor vibration measurements,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE, 2004), 215-229.

2003 (1)

R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling, and H. Nijmeijer, “Prediction of regenerative chatter by modelling and analysis of high-speed milling,” Int. J. Mach. Tools Manuf. 43, 1437-1446 (2003).
[CrossRef]

2002 (1)

2001 (3)

2000 (1)

J. R. Bell and S. J. Rothberg, “Laser vibrometers and contacting transducers, target rotation and six degree-of-freedom vibration: what do we really measure?,” J. Sound Vib. 237, 245-261 (2000).
[CrossRef]

1996 (2)

1989 (1)

S. J. Rothberg, J. R. Baker, and N. A. Halliwell, “Laser vibrometry: pseudo-vibration,” J. Sound Vib. 135, 516-522 (1989).
[CrossRef]

1982 (1)

1979 (1)

C. M. Vest, Holographic Interferometry (Wiley, 1979).

Aidanpaa, J.-O.

M. Rantatalo, J.-O. Aidanpaa, B. Goransson, and P. Norman, “Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement,' Int. J. Mach. Tools Manuf. 47, 1034-1045 (2007).
[CrossRef]

Albrecht, A.

A. Albrecht, S. S. Park, Y. Altintas, and G. Pritschow, “High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors,” Int. J. Mach. Tools Manuf. 45, 993-1008 (2005).
[CrossRef]

Alexeenko, I.

Altintas, Y.

A. Albrecht, S. S. Park, Y. Altintas, and G. Pritschow, “High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors,” Int. J. Mach. Tools Manuf. 45, 993-1008 (2005).
[CrossRef]

Aoki, J.

E. Okuyama, N. Nosaka, and J. Aoki, “Radial motion measurement of a high-revolution spindle motor,” Measurement 40, 64-74 (2007).
[CrossRef]

Baker, J. R.

S. J. Rothberg, J. R. Baker, and N. A. Halliwell, “Laser vibrometry: pseudo-vibration,” J. Sound Vib. 135, 516-522 (1989).
[CrossRef]

Barra, C.

V. Gagnol, B. C. Bouzgarrou, P. Ray, and C. Barra, “Model-based chatter stability prediction for high-speed spindles,” Int. J. Mach. Tools Manuf. 47, 1176-1186 (2007).
[CrossRef]

Bell, J. R.

S. J. Rothberg and J. R. Bell, “On the application of laser vibrometry to translational and rotational vibration measurements on rotating shafts,” Measurement 35, 201-210 (2004).
[CrossRef]

J. R. Bell and S. J. Rothberg, “Laser vibrometers and contacting transducers, target rotation and six degree-of-freedom vibration: what do we really measure?,” J. Sound Vib. 237, 245-261 (2000).
[CrossRef]

Bhattacharyya, O.

O. Bhattacharyya, M. B. Jun, S. G. Kapoor, and R. E. DeVor, “The effects of process faults and misalignments on the cutting force system and hole quality in reaming,” Int. J. Mach. Tools Manuf. 46, 1281-1290 (2006).
[CrossRef]

Bouzgarrou, B. C.

V. Gagnol, B. C. Bouzgarrou, P. Ray, and C. Barra, “Model-based chatter stability prediction for high-speed spindles,” Int. J. Mach. Tools Manuf. 47, 1176-1186 (2007).
[CrossRef]

Chang, H.-K.

H.-K. Chang, J.-H. Kim, I. H. Kim, D. Y. Jang, and D. C. Han, “In-process surface roughness prediction using displacement signals from spindle motion,” Int. J. Mach. Tools Manuf. 47, 1021-1026 (2007).
[CrossRef]

DeVor, R. E.

O. Bhattacharyya, M. B. Jun, S. G. Kapoor, and R. E. DeVor, “The effects of process faults and misalignments on the cutting force system and hole quality in reaming,” Int. J. Mach. Tools Manuf. 46, 1281-1290 (2006).
[CrossRef]

Faassen, R. P. H.

R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling, and H. Nijmeijer, “Prediction of regenerative chatter by modelling and analysis of high-speed milling,” Int. J. Mach. Tools Manuf. 43, 1437-1446 (2003).
[CrossRef]

Fu, Y.

Gagnol, V.

V. Gagnol, B. C. Bouzgarrou, P. Ray, and C. Barra, “Model-based chatter stability prediction for high-speed spindles,” Int. J. Mach. Tools Manuf. 47, 1176-1186 (2007).
[CrossRef]

Goransson, B.

M. Rantatalo, J.-O. Aidanpaa, B. Goransson, and P. Norman, “Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement,' Int. J. Mach. Tools Manuf. 47, 1034-1045 (2007).
[CrossRef]

Gren, P.

K. Tatar and P. Gren, “Measurement of milling tool vibrations during cutting using laser vibrometry,” Int. J. Mach. Tools Manuf. 48, 380-387 (2008).
[CrossRef]

K. Tatar, M. Rantatalo, and P. Gren, “Laser vibrometry measurements of an optically smooth rotating spindle,” Mech. Syst. Signal Process. 21, 1739-1745 (2007).
[CrossRef]

P. Gren, “Bending wave propagation in rotating objects measured by pulsed TV holography,” Appl. Opt. 41, 7237-7240 (2002).
[CrossRef] [PubMed]

P. Gren, “Pulsed TV holography combined with digital speckle photography restores lost interference phase,” Appl. Opt. 40, 2304-2309 (2001).
[CrossRef]

Groves, R. M.

Gusev, M. E.

Halkon, B.

B. Halkon and S. J. Rothberg, “Automatic post-processing of laser vibrometry data for rotor vibration measurements,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE, 2004), 215-229.

Halliwell, N. A.

S. J. Rothberg, J. R. Baker, and N. A. Halliwell, “Laser vibrometry: pseudo-vibration,” J. Sound Vib. 135, 516-522 (1989).
[CrossRef]

Han, D. C.

H.-K. Chang, J.-H. Kim, I. H. Kim, D. Y. Jang, and D. C. Han, “In-process surface roughness prediction using displacement signals from spindle motion,” Int. J. Mach. Tools Manuf. 47, 1021-1026 (2007).
[CrossRef]

Ina, H.

Jang, D. Y.

H.-K. Chang, J.-H. Kim, I. H. Kim, D. Y. Jang, and D. C. Han, “In-process surface roughness prediction using displacement signals from spindle motion,” Int. J. Mach. Tools Manuf. 47, 1021-1026 (2007).
[CrossRef]

Jun, M. B.

O. Bhattacharyya, M. B. Jun, S. G. Kapoor, and R. E. DeVor, “The effects of process faults and misalignments on the cutting force system and hole quality in reaming,” Int. J. Mach. Tools Manuf. 46, 1281-1290 (2006).
[CrossRef]

Jüptner, W.

Kapoor, S. G.

O. Bhattacharyya, M. B. Jun, S. G. Kapoor, and R. E. DeVor, “The effects of process faults and misalignments on the cutting force system and hole quality in reaming,” Int. J. Mach. Tools Manuf. 46, 1281-1290 (2006).
[CrossRef]

Kim, I. H.

H.-K. Chang, J.-H. Kim, I. H. Kim, D. Y. Jang, and D. C. Han, “In-process surface roughness prediction using displacement signals from spindle motion,” Int. J. Mach. Tools Manuf. 47, 1021-1026 (2007).
[CrossRef]

Kim, J.-H.

H.-K. Chang, J.-H. Kim, I. H. Kim, D. Y. Jang, and D. C. Han, “In-process surface roughness prediction using displacement signals from spindle motion,” Int. J. Mach. Tools Manuf. 47, 1021-1026 (2007).
[CrossRef]

Kobayashi, S.

Kolenovic, E.

Kreis, T.

Molin, N.-E.

Nijmeijer, H.

R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling, and H. Nijmeijer, “Prediction of regenerative chatter by modelling and analysis of high-speed milling,” Int. J. Mach. Tools Manuf. 43, 1437-1446 (2003).
[CrossRef]

Norman, P.

M. Rantatalo, J.-O. Aidanpaa, B. Goransson, and P. Norman, “Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement,' Int. J. Mach. Tools Manuf. 47, 1034-1045 (2007).
[CrossRef]

M. Rantatalo, K. Tatar, and P. Norman, “Laser Doppler vibrometry measurements of a rotating milling machine spindle,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE Event Publications, 2004), pp. 231-240.

Nosaka, N.

E. Okuyama, N. Nosaka, and J. Aoki, “Radial motion measurement of a high-revolution spindle motor,” Measurement 40, 64-74 (2007).
[CrossRef]

Okuyama, E.

E. Okuyama, N. Nosaka, and J. Aoki, “Radial motion measurement of a high-revolution spindle motor,” Measurement 40, 64-74 (2007).
[CrossRef]

Oosterling, J. A. J.

R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling, and H. Nijmeijer, “Prediction of regenerative chatter by modelling and analysis of high-speed milling,” Int. J. Mach. Tools Manuf. 43, 1437-1446 (2003).
[CrossRef]

Osten, W.

Park, S. S.

A. Albrecht, S. S. Park, Y. Altintas, and G. Pritschow, “High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors,” Int. J. Mach. Tools Manuf. 45, 993-1008 (2005).
[CrossRef]

Pedrini, G.

Perez-Lopez, C.

Pritschow, G.

A. Albrecht, S. S. Park, Y. Altintas, and G. Pritschow, “High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors,” Int. J. Mach. Tools Manuf. 45, 993-1008 (2005).
[CrossRef]

Rantatalo, M.

M. Rantatalo, J.-O. Aidanpaa, B. Goransson, and P. Norman, “Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement,' Int. J. Mach. Tools Manuf. 47, 1034-1045 (2007).
[CrossRef]

K. Tatar, M. Rantatalo, and P. Gren, “Laser vibrometry measurements of an optically smooth rotating spindle,” Mech. Syst. Signal Process. 21, 1739-1745 (2007).
[CrossRef]

M. Rantatalo, K. Tatar, and P. Norman, “Laser Doppler vibrometry measurements of a rotating milling machine spindle,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE Event Publications, 2004), pp. 231-240.

Ray, P.

V. Gagnol, B. C. Bouzgarrou, P. Ray, and C. Barra, “Model-based chatter stability prediction for high-speed spindles,” Int. J. Mach. Tools Manuf. 47, 1176-1186 (2007).
[CrossRef]

Rothberg, S. J.

S. J. Rothberg and J. R. Bell, “On the application of laser vibrometry to translational and rotational vibration measurements on rotating shafts,” Measurement 35, 201-210 (2004).
[CrossRef]

B. Halkon and S. J. Rothberg, “Automatic post-processing of laser vibrometry data for rotor vibration measurements,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE, 2004), 215-229.

J. R. Bell and S. J. Rothberg, “Laser vibrometers and contacting transducers, target rotation and six degree-of-freedom vibration: what do we really measure?,” J. Sound Vib. 237, 245-261 (2000).
[CrossRef]

S. J. Rothberg, J. R. Baker, and N. A. Halliwell, “Laser vibrometry: pseudo-vibration,” J. Sound Vib. 135, 516-522 (1989).
[CrossRef]

Saldner, H. O.

Santoyo, F. Mendoza

Schedin, S.

Schnars, U.

Stetson, K. A.

Takeda, M.

Tatar, K.

K. Tatar and P. Gren, “Measurement of milling tool vibrations during cutting using laser vibrometry,” Int. J. Mach. Tools Manuf. 48, 380-387 (2008).
[CrossRef]

K. Tatar, M. Rantatalo, and P. Gren, “Laser vibrometry measurements of an optically smooth rotating spindle,” Mech. Syst. Signal Process. 21, 1739-1745 (2007).
[CrossRef]

M. Rantatalo, K. Tatar, and P. Norman, “Laser Doppler vibrometry measurements of a rotating milling machine spindle,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE Event Publications, 2004), pp. 231-240.

Tiziani, H. J.

van de Wouw, N.

R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling, and H. Nijmeijer, “Prediction of regenerative chatter by modelling and analysis of high-speed milling,” Int. J. Mach. Tools Manuf. 43, 1437-1446 (2003).
[CrossRef]

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, 1979).

von Kopylow, C.

Appl. Opt. (9)

G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456-3462 (2006).
[CrossRef] [PubMed]

Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analyses of a digital hologram sequence,” Appl. Opt. 46, 5719-5727 (2007).
[CrossRef] [PubMed]

Y. Fu, R. M. Groves, G. Pedrini, and W. Osten, “Kinematic and deformation parameter measurement by spatiotemporal analysis of an interferogram sequence,” Appl. Opt. 46, 8645-8655 (2007).
[CrossRef] [PubMed]

H. O. Saldner, N.-E. Molin, and K. A. Stetson, “Fourier-transform evaluation of phase data in spatially phase-biased TV holograms,” Appl. Opt. 35, 332-336 (1996).
[CrossRef] [PubMed]

P. Gren, “Pulsed TV holography combined with digital speckle photography restores lost interference phase,” Appl. Opt. 40, 2304-2309 (2001).
[CrossRef]

P. Gren, “Bending wave propagation in rotating objects measured by pulsed TV holography,” Appl. Opt. 41, 7237-7240 (2002).
[CrossRef] [PubMed]

G. Pedrini, I. Alexeenko, W. Osten, and U. Schnars, “On-line surveillance of a dynamic process by a moving system based on pulsed digital holographic interferometry,” Appl. Opt. 45, 935-943 (2006).
[CrossRef] [PubMed]

E. Kolenović, T. Kreis, C. von Kopylow, and W. Jüptner, “Determination of large-scale out-of-plane displacements in digital Fourier holography,” Appl. Opt. 46, 3118-3125 (2007).
[CrossRef] [PubMed]

C. Perez-Lopez, F. Mendoza Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Appl. Opt. 40, 5106-5110 (2001).
[CrossRef]

Int. J. Mach. Tools Manuf. (7)

A. Albrecht, S. S. Park, Y. Altintas, and G. Pritschow, “High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors,” Int. J. Mach. Tools Manuf. 45, 993-1008 (2005).
[CrossRef]

H.-K. Chang, J.-H. Kim, I. H. Kim, D. Y. Jang, and D. C. Han, “In-process surface roughness prediction using displacement signals from spindle motion,” Int. J. Mach. Tools Manuf. 47, 1021-1026 (2007).
[CrossRef]

M. Rantatalo, J.-O. Aidanpaa, B. Goransson, and P. Norman, “Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement,' Int. J. Mach. Tools Manuf. 47, 1034-1045 (2007).
[CrossRef]

O. Bhattacharyya, M. B. Jun, S. G. Kapoor, and R. E. DeVor, “The effects of process faults and misalignments on the cutting force system and hole quality in reaming,” Int. J. Mach. Tools Manuf. 46, 1281-1290 (2006).
[CrossRef]

R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling, and H. Nijmeijer, “Prediction of regenerative chatter by modelling and analysis of high-speed milling,” Int. J. Mach. Tools Manuf. 43, 1437-1446 (2003).
[CrossRef]

V. Gagnol, B. C. Bouzgarrou, P. Ray, and C. Barra, “Model-based chatter stability prediction for high-speed spindles,” Int. J. Mach. Tools Manuf. 47, 1176-1186 (2007).
[CrossRef]

K. Tatar and P. Gren, “Measurement of milling tool vibrations during cutting using laser vibrometry,” Int. J. Mach. Tools Manuf. 48, 380-387 (2008).
[CrossRef]

J. Holography Speckle (1)

S. Schedin, “Digital holographic interferometry,” J. Holography Speckle 3, 1-17 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Sound Vib. (2)

S. J. Rothberg, J. R. Baker, and N. A. Halliwell, “Laser vibrometry: pseudo-vibration,” J. Sound Vib. 135, 516-522 (1989).
[CrossRef]

J. R. Bell and S. J. Rothberg, “Laser vibrometers and contacting transducers, target rotation and six degree-of-freedom vibration: what do we really measure?,” J. Sound Vib. 237, 245-261 (2000).
[CrossRef]

Measurement (2)

E. Okuyama, N. Nosaka, and J. Aoki, “Radial motion measurement of a high-revolution spindle motor,” Measurement 40, 64-74 (2007).
[CrossRef]

S. J. Rothberg and J. R. Bell, “On the application of laser vibrometry to translational and rotational vibration measurements on rotating shafts,” Measurement 35, 201-210 (2004).
[CrossRef]

Mech. Syst. Signal Process. (1)

K. Tatar, M. Rantatalo, and P. Gren, “Laser vibrometry measurements of an optically smooth rotating spindle,” Mech. Syst. Signal Process. 21, 1739-1745 (2007).
[CrossRef]

Proc. SPIE (1)

C. Perez-Lopez and F. Mendoza Santoyo, “Rigid body motion removal by derotating digital holograms” Proc. SPIE 4419, 226-230 (2001).
[CrossRef]

Other (4)

C. M. Vest, Holographic Interferometry (Wiley, 1979).

B. Halkon and S. J. Rothberg, “Automatic post-processing of laser vibrometry data for rotor vibration measurements,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE, 2004), 215-229.

T. Kreis, Holographyc Interferometry: Principles and Methods, 1st ed. (Akademie Verlag, 1996), Vol. 1.

M. Rantatalo, K. Tatar, and P. Norman, “Laser Doppler vibrometry measurements of a rotating milling machine spindle,” in Eighth International Conference on Vibrations in Rotating Machinery (IMechE Event Publications, 2004), pp. 231-240.

Supplementary Material (1)

» Media 1: MOV (1878 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: beam splitter (BS), polarizing beam splitter (PBS), cylindrical lenses (L1 and L2), and diffuser (D).

Fig. 2
Fig. 2

Schematic representation of the polished shaft mounted in the rotation stage. The LDV measurement point (LMP) is 115 mm above the base of the rotation stage ( z = 29 mm ). The digital holographic interferometry measurement line (DHI) starts 87 mm above the base of the rotation stage ( z = 0 ).

Fig. 3
Fig. 3

(a) Speckle patterns on the diffuser and (b) wrapped phase maps at t = 25.1 ms . The first 1120 pixels correspond to the y displacement and the pixels within the black border correspond to the x displacement.

Fig. 4
Fig. 4

Continuous phase at 25.1 ms . The first 1120 pixels correspond to the y displacement between z = 0 mm and z = 45 mm and the last 100 pixels correspond to the x displacement at z = 29 mm .

Fig. 5
Fig. 5

y displacements measured on the fraction of the shaft as seen in Fig. 2. The middle line shows the y-radial deflection along the rotating shaft at t = 25.1 ms and the two outer lines are the end positions of the vibration (see Media 1 for video).

Fig. 6
Fig. 6

Displacement in both x and y directions measured at z = 29 mm as functions of time. The displacement obtained by laser vibrometry (LDV) is shifted up 0.1 μm for easier comparison.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Φ = tan 1 Im ( u ) Re ( u ) ,
Δ Φ = tan 1 Re ( u 1 ) Im ( u 2 ) Im ( u 1 ) Re ( u 2 ) Im ( u 1 ) Im ( u 2 ) + Re ( u 1 ) Re ( u 2 ) ,
Δ Φ = 2 π λ d · S ,
S = o i
f max = 2 λ sin ( θ max 2 ) .
f max = 1 2 Δ ,
v max < λ 2 | S | f camera ,

Metrics