Abstract

In this study, we propose a beveled fiber-optic probe coupled with a half-ball lens for improving the depth-resolved fluorescence measurements of epithelial tissue. The Monte Carlo (MC) simulation results show that for a given excitation-collection fiber separation, the probe design with a bevel-angled collection fiber is more sensitive to detect fluorescence photons emitted from the shallow layer of tissue, whereas the flat-tip collection fiber is in favor of probing fluorescence photons originating from deeper tissue areas. This compact half-ball lens-beveled fiber probe design has the potential to facilitate the depth-resolved fluorescence detection of epithelial tissue.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99-105 (1991).
    [CrossRef] [PubMed]
  2. Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. McLean, and H Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63 (2004).
  3. C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J Biomed. Opt. 8, 237-247 (2003).
    [CrossRef] [PubMed]
  4. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712-4721 (2002).
    [CrossRef] [PubMed]
  5. Y. Wu, X. Peng, J. Y. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy reveals layered structure of tissue,” Opt. Express 12, 3218-3223 (2004).
    [CrossRef] [PubMed]
  6. N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid medium by polarized fluorescence spectroscopy,” Opt. Lett. 30, 162-164 (2005).
    [CrossRef] [PubMed]
  7. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30, 1159-1161 (2005).
    [CrossRef] [PubMed]
  8. B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429-7436 (1998).
    [CrossRef]
  9. K. Vishwanath and M. A. Mycek, “Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?” Opt. Lett. 29, 1512-1514 (2004).
    [CrossRef] [PubMed]
  10. L. V. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  11. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291-4305 (2005).
    [CrossRef] [PubMed]

2005 (3)

2004 (3)

2003 (1)

C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J Biomed. Opt. 8, 237-247 (2003).
[CrossRef] [PubMed]

2002 (1)

1998 (1)

1995 (1)

L. V. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

1991 (1)

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99-105 (1991).
[CrossRef] [PubMed]

Arifler, D.

Burke, G.

Chang, S. K.

Chen, R.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. McLean, and H Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63 (2004).

Cheung, T. H.

Ediger, M. N.

Ghosh, N.

Gillenwater, A. M.

Gupta, P. K.

Huang, Z.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. McLean, and H Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63 (2004).

Hung, J.

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99-105 (1991).
[CrossRef] [PubMed]

Hussain, I. A.

Jacques, S. L.

L. V. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Knight, B.

Lam, S.

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99-105 (1991).
[CrossRef] [PubMed]

LeRiche, J. C.

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99-105 (1991).
[CrossRef] [PubMed]

Liu, Q.

C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J Biomed. Opt. 8, 237-247 (2003).
[CrossRef] [PubMed]

Lui, H

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. McLean, and H Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63 (2004).

Mack, V.

Majumder, S. K.

McLean, D. I.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. McLean, and H Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63 (2004).

Mycek, M. A.

Nishioka, N. S.

Palcic, B.

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99-105 (1991).
[CrossRef] [PubMed]

Patel, H. S.

Pavlova, I.

Peng, X.

Pfefer, T. J.

Pogue, B. W.

Qu, J. Y.

Ramanujam, N.

C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J Biomed. Opt. 8, 237-247 (2003).
[CrossRef] [PubMed]

Richards-Kortum, R.

Schomacker, K. T.

Schwarz, R. A.

Vishwanath, K.

Wang, L. V.

L. V. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Wu, Y.

Xie, S.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. McLean, and H Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63 (2004).

Yu, M. Y.

Zeng, H.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. McLean, and H Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63 (2004).

Zheng, L.

L. V. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Zheng, W.

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. McLean, and H Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63 (2004).

Zhu, C. F.

C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J Biomed. Opt. 8, 237-247 (2003).
[CrossRef] [PubMed]

Appl. Opt. (3)

Comput. Methods Programs Biomed. (1)

L. V. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Int. J. Oncol. (1)

Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. McLean, and H Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63 (2004).

J Biomed. Opt. (1)

C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J Biomed. Opt. 8, 237-247 (2003).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

J. Hung, S. Lam, J. C. LeRiche, and B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99-105 (1991).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the probe design consisting of a beveled collection fiber and a flat-tip excitation fiber coupled with a half-ball lens; (b) the beveled-tip collection fiber with a bevel angle β. γ is the refracted angle of the light. The gray area indicates the emitting or collection cone of the beveled collection fiber. l F L is the gap between the beveled fiber and the half-ball lens; l L T is the distance between the half-ball lens and the tissue.

Fig. 2
Fig. 2

Intensity ratio k as a function of the bevel angle (β) of the collection fiber for different excitation-collection fiber distances.

Fig. 3
Fig. 3

Distribution of fluorescence signals detected as a function of tissue depth z for different bevel angles of the collection fiber distance l d = 500 μm . Note that each curve is normalized to the fluorescence signal generated in the epithelium layer ( 0 300 μm ).

Fig. 4
Fig. 4

Intensity ratio k as a function of the distance ( l L T ) between the collection fiber and the half-ball lens for different bevel angles of the collection fiber. Excitation-collection fiber distance l d = 500 μm ; refractive index of the half-ball lens n H B = 1.77 .

Fig. 5
Fig. 5

Intensity ratio k as a function of bevel angles of the collection fiber for different refractive indices of the half-ball lens. Excitation-collection fiber distance l d = 500 μm .

Fig. 6
Fig. 6

Intensity ratio k as a function of the N.A. of the collection and excitation fibers. The ratio value k decreases with the increased N.A. excitation-collection fiber distance l d = 500 μm .

Fig. 7
Fig. 7

Intensity ratio k as a function of the distance ( l L T ) between the half-ball lens and the tissue surface for different bevel angles of the collection fiber. Excitation-collection fiber distance l d = 500 μm ; refractive index of the half-ball lens n H B = 1.77 .

Tables (1)

Tables Icon

Table 1 Optical Parameters of the Two-Layer Tissue Model a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ = sin 1 [ n f sin ( β ) ] β ,
R = 1 2 [ sin 2 ( α i - α t ) sin 2 ( α i + α t ) + tan 2 ( α i - α t ) tan 2 ( α i + α t ) ] ,
p = exp ( - μ a f s ) ,
k = I stroma I epithelium ,

Metrics