Abstract

The transient wavelength performance of high-power InP laser diode stacks with internal Bragg gratings is studied experimentally. Because of the wavelength selective nature of the internal grating, which is decoupled from the actual gain profile dynamics of the laser diode, the wavelength drift with respect to temperature and current is greatly reduced and steady-state conditions are reached after a short settling time of less than 50ms.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
    [CrossRef]
  2. J. Carter, D. Snyder, and J. Reichenbaugh, “Transient thermal modeling of high-power pulsed laser diode arrays,” 19th IEEE SEMI-THERM Symposium (IEEE, 2003), pp. 276-283.
  3. M. Ziegler, F. Weik, J. W. Tomm, T. Elsaesser, W. Nakwaski, and R. P. Sarzala, “Transient thermal properties of high-power diode laser bars,” Appl. Phys. Lett. 89263506-263508(2006).
    [CrossRef]
  4. G. I. Ryabtsev, A. N. Kuzmin, J. A. Ges, Yu. P. Gorban, M. Soukieh, V. P. Konyaev, and W. Strek, “Thermal properties of high-power InGaAs/AlGaAs laser diodes,” J. Appl. Spectros. 62, 900 (1995).
    [CrossRef]
  5. M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249-256 (2008).
    [CrossRef]
  6. M. Dubinskii, N. Ter-Gabrielyan, M. Camargo, G. A. Newburgh, and L. D. Merkle, “Ultra-low-photon-defect cryo-laser performance of resonantly diode-pumped Er3+:YAG,” presented at the Conference on Lasers and Electro-Optics 2007, Baltimore, Maryland, USA, 6-11 May 2007, paper CTuN1.

2008

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249-256 (2008).
[CrossRef]

2006

M. Ziegler, F. Weik, J. W. Tomm, T. Elsaesser, W. Nakwaski, and R. P. Sarzala, “Transient thermal properties of high-power diode laser bars,” Appl. Phys. Lett. 89263506-263508(2006).
[CrossRef]

2005

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

1995

G. I. Ryabtsev, A. N. Kuzmin, J. A. Ges, Yu. P. Gorban, M. Soukieh, V. P. Konyaev, and W. Strek, “Thermal properties of high-power InGaAs/AlGaAs laser diodes,” J. Appl. Spectros. 62, 900 (1995).
[CrossRef]

An, H.

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

Belenky, G.

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

Camargo, M.

M. Dubinskii, N. Ter-Gabrielyan, M. Camargo, G. A. Newburgh, and L. D. Merkle, “Ultra-low-photon-defect cryo-laser performance of resonantly diode-pumped Er3+:YAG,” presented at the Conference on Lasers and Electro-Optics 2007, Baltimore, Maryland, USA, 6-11 May 2007, paper CTuN1.

Carter, J.

J. Carter, D. Snyder, and J. Reichenbaugh, “Transient thermal modeling of high-power pulsed laser diode arrays,” 19th IEEE SEMI-THERM Symposium (IEEE, 2003), pp. 276-283.

Donetsky, D.

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

Dubinskii, M.

M. Dubinskii, N. Ter-Gabrielyan, M. Camargo, G. A. Newburgh, and L. D. Merkle, “Ultra-low-photon-defect cryo-laser performance of resonantly diode-pumped Er3+:YAG,” presented at the Conference on Lasers and Electro-Optics 2007, Baltimore, Maryland, USA, 6-11 May 2007, paper CTuN1.

Eichhorn, M.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249-256 (2008).
[CrossRef]

Elsaesser, T.

M. Ziegler, F. Weik, J. W. Tomm, T. Elsaesser, W. Nakwaski, and R. P. Sarzala, “Transient thermal properties of high-power diode laser bars,” Appl. Phys. Lett. 89263506-263508(2006).
[CrossRef]

Fredrich-Thornton, S. T.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249-256 (2008).
[CrossRef]

Ges, J. A.

G. I. Ryabtsev, A. N. Kuzmin, J. A. Ges, Yu. P. Gorban, M. Soukieh, V. P. Konyaev, and W. Strek, “Thermal properties of high-power InGaAs/AlGaAs laser diodes,” J. Appl. Spectros. 62, 900 (1995).
[CrossRef]

Gorban, Yu. P.

G. I. Ryabtsev, A. N. Kuzmin, J. A. Ges, Yu. P. Gorban, M. Soukieh, V. P. Konyaev, and W. Strek, “Thermal properties of high-power InGaAs/AlGaAs laser diodes,” J. Appl. Spectros. 62, 900 (1995).
[CrossRef]

Gourevich, A.

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

Heumann, E.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249-256 (2008).
[CrossRef]

Huber, G.

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249-256 (2008).
[CrossRef]

Konyaev, V. P.

G. I. Ryabtsev, A. N. Kuzmin, J. A. Ges, Yu. P. Gorban, M. Soukieh, V. P. Konyaev, and W. Strek, “Thermal properties of high-power InGaAs/AlGaAs laser diodes,” J. Appl. Spectros. 62, 900 (1995).
[CrossRef]

Kuzmin, A. N.

G. I. Ryabtsev, A. N. Kuzmin, J. A. Ges, Yu. P. Gorban, M. Soukieh, V. P. Konyaev, and W. Strek, “Thermal properties of high-power InGaAs/AlGaAs laser diodes,” J. Appl. Spectros. 62, 900 (1995).
[CrossRef]

Laikhtman, B.

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

Martinelli, R. U.

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

Merkle, L. D.

M. Dubinskii, N. Ter-Gabrielyan, M. Camargo, G. A. Newburgh, and L. D. Merkle, “Ultra-low-photon-defect cryo-laser performance of resonantly diode-pumped Er3+:YAG,” presented at the Conference on Lasers and Electro-Optics 2007, Baltimore, Maryland, USA, 6-11 May 2007, paper CTuN1.

Nakwaski, W.

M. Ziegler, F. Weik, J. W. Tomm, T. Elsaesser, W. Nakwaski, and R. P. Sarzala, “Transient thermal properties of high-power diode laser bars,” Appl. Phys. Lett. 89263506-263508(2006).
[CrossRef]

Newburgh, G. A.

M. Dubinskii, N. Ter-Gabrielyan, M. Camargo, G. A. Newburgh, and L. D. Merkle, “Ultra-low-photon-defect cryo-laser performance of resonantly diode-pumped Er3+:YAG,” presented at the Conference on Lasers and Electro-Optics 2007, Baltimore, Maryland, USA, 6-11 May 2007, paper CTuN1.

Reichenbaugh, J.

J. Carter, D. Snyder, and J. Reichenbaugh, “Transient thermal modeling of high-power pulsed laser diode arrays,” 19th IEEE SEMI-THERM Symposium (IEEE, 2003), pp. 276-283.

Ryabtsev, G. I.

G. I. Ryabtsev, A. N. Kuzmin, J. A. Ges, Yu. P. Gorban, M. Soukieh, V. P. Konyaev, and W. Strek, “Thermal properties of high-power InGaAs/AlGaAs laser diodes,” J. Appl. Spectros. 62, 900 (1995).
[CrossRef]

Sarzala, R. P.

M. Ziegler, F. Weik, J. W. Tomm, T. Elsaesser, W. Nakwaski, and R. P. Sarzala, “Transient thermal properties of high-power diode laser bars,” Appl. Phys. Lett. 89263506-263508(2006).
[CrossRef]

Shellenbarger, Z.

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

Snyder, D.

J. Carter, D. Snyder, and J. Reichenbaugh, “Transient thermal modeling of high-power pulsed laser diode arrays,” 19th IEEE SEMI-THERM Symposium (IEEE, 2003), pp. 276-283.

Soukieh, M.

G. I. Ryabtsev, A. N. Kuzmin, J. A. Ges, Yu. P. Gorban, M. Soukieh, V. P. Konyaev, and W. Strek, “Thermal properties of high-power InGaAs/AlGaAs laser diodes,” J. Appl. Spectros. 62, 900 (1995).
[CrossRef]

Strek, W.

G. I. Ryabtsev, A. N. Kuzmin, J. A. Ges, Yu. P. Gorban, M. Soukieh, V. P. Konyaev, and W. Strek, “Thermal properties of high-power InGaAs/AlGaAs laser diodes,” J. Appl. Spectros. 62, 900 (1995).
[CrossRef]

Ter-Gabrielyan, N.

M. Dubinskii, N. Ter-Gabrielyan, M. Camargo, G. A. Newburgh, and L. D. Merkle, “Ultra-low-photon-defect cryo-laser performance of resonantly diode-pumped Er3+:YAG,” presented at the Conference on Lasers and Electro-Optics 2007, Baltimore, Maryland, USA, 6-11 May 2007, paper CTuN1.

Tomm, J. W.

M. Ziegler, F. Weik, J. W. Tomm, T. Elsaesser, W. Nakwaski, and R. P. Sarzala, “Transient thermal properties of high-power diode laser bars,” Appl. Phys. Lett. 89263506-263508(2006).
[CrossRef]

Trussel, C. W.

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

Weik, F.

M. Ziegler, F. Weik, J. W. Tomm, T. Elsaesser, W. Nakwaski, and R. P. Sarzala, “Transient thermal properties of high-power diode laser bars,” Appl. Phys. Lett. 89263506-263508(2006).
[CrossRef]

Westerfeld, D.

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

Ziegler, M.

M. Ziegler, F. Weik, J. W. Tomm, T. Elsaesser, W. Nakwaski, and R. P. Sarzala, “Transient thermal properties of high-power diode laser bars,” Appl. Phys. Lett. 89263506-263508(2006).
[CrossRef]

Appl. Phys. B

M. Eichhorn, S. T. Fredrich-Thornton, E. Heumann, and G. Huber, “Spectroscopic properties of Er3+:YAG at 300 K-550 K and their effects on the 1.6 μm laser transitions,” Appl. Phys. B 91, 249-256 (2008).
[CrossRef]

Appl. Phys. Lett.

M. Ziegler, F. Weik, J. W. Tomm, T. Elsaesser, W. Nakwaski, and R. P. Sarzala, “Transient thermal properties of high-power diode laser bars,” Appl. Phys. Lett. 89263506-263508(2006).
[CrossRef]

J. Appl. Phys.

A. Gourevich, B. Laikhtman, D. Westerfeld, D. Donetsky, G. Belenky, C. W. Trussel, Z. Shellenbarger, H. An, and R. U. Martinelli, “Transient thermal analysis of InGaAsP-InP high-power diode laser arrays with different fill factors,” J. Appl. Phys. 97, 084503 (2005).
[CrossRef]

J. Appl. Spectros.

G. I. Ryabtsev, A. N. Kuzmin, J. A. Ges, Yu. P. Gorban, M. Soukieh, V. P. Konyaev, and W. Strek, “Thermal properties of high-power InGaAs/AlGaAs laser diodes,” J. Appl. Spectros. 62, 900 (1995).
[CrossRef]

Other

J. Carter, D. Snyder, and J. Reichenbaugh, “Transient thermal modeling of high-power pulsed laser diode arrays,” 19th IEEE SEMI-THERM Symposium (IEEE, 2003), pp. 276-283.

M. Dubinskii, N. Ter-Gabrielyan, M. Camargo, G. A. Newburgh, and L. D. Merkle, “Ultra-low-photon-defect cryo-laser performance of resonantly diode-pumped Er3+:YAG,” presented at the Conference on Lasers and Electro-Optics 2007, Baltimore, Maryland, USA, 6-11 May 2007, paper CTuN1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic setup of the experiment.

Fig. 2
Fig. 2

Current dependent wavelength shift measured for two different diode stacks at constant cooling water temperature and flow rate.

Fig. 3
Fig. 3

Output power of a diode stack operated at 40 A peak current for 17 ms .

Fig. 4
Fig. 4

Position dependent transmission of the variable filter. The inset shows a fit to the data in the vicinity of the operation point marked by the filled circle.

Fig. 5
Fig. 5

Time-dependent wavelength shift of diode stack 2 measured for a constant peak current pulse of 80 A , 300 ms duration and exponential fit according to Eq. (1). The inset shows the wavelength shift during the full period of the pulse.

Fig. 6
Fig. 6

Transmission of an 80 mm long Er 3 + : YAG sample for pulses of different durations. The dashed line represents the expected spectroscopic transmission in the case of a spectrally infinitely narrow probe beam [5].

Fig. 7
Fig. 7

Zero current starting wavelength of stack 1 versus cooling water temperature.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ T ( t ) = T i ( 1 e t τ i ) + T s ( 1 e t τ s ) + T p ( 1 e t τ p ) .
T ( λ ) = A e λ / λ 0
P n , 0 ( t ) = P n ( t ) P n ( t 0 ) ,
P f , 0 ( t ) = P f ( t ) P f ( t 0 ) ,
Δ λ ( t ) = λ 0 ln P f , 0 ( t ) P n , 0 ( t ) .
T ( λ ) = e α ( λ ) L
T ( I ) = e α ( [ 0.036 nm / A ] × I + λ s ( T ) ) L

Metrics