Abstract

By tightly focusing 27fs laser pulses from a Ti:sapphire oscillator with 1.3nJ pulse energy at 93MHz repetition rate, we are able to fabricate optical waveguides inside hydrogel polymers containing 36% water by weight. A tapered lensed fiber is used to couple laser light at a wavelength of 632.8nm into these waveguides within a water environment. Strong waveguiding is observed due to large refractive index changes. A large waveguide propagation loss is found, and we show that this is caused by surface roughness which can be reduced by optimizing the waveguides.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
157?nmF2-laser writing of silica optical waveguides in silicone rubber

Masayuki Okoshi, Jianzhao Li, and Peter R. Herman
Opt. Lett. 30(20) 2730-2732 (2005)

Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining

Li Ding, Richard Blackwell, Jay F. Künzler, and Wayne H. Knox
Opt. Express 14(24) 11901-11909 (2006)

Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers

Li Ding, Dharmendra Jani, Jeffrey Linhardt, Jay F. Künzler, Siddhesh Pawar, Glen Labenski, Thomas Smith, and Wayne H. Knox
Opt. Express 16(26) 21914-21921 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription