Abstract

By tightly focusing 27fs laser pulses from a Ti:sapphire oscillator with 1.3nJ pulse energy at 93MHz repetition rate, we are able to fabricate optical waveguides inside hydrogel polymers containing 36% water by weight. A tapered lensed fiber is used to couple laser light at a wavelength of 632.8nm into these waveguides within a water environment. Strong waveguiding is observed due to large refractive index changes. A large waveguide propagation loss is found, and we show that this is caused by surface roughness which can be reduced by optimizing the waveguides.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Walker, K. Balasubramanian, and W. M. Reichert, “Low loss HEMA/EMA copolymer waveguides with a range of wetting and optical properties,” J. Appl. Poly. Sci. 49, 2147-2155 (1993).
    [CrossRef]
  2. D. S. Walker, M. D. Garrison, and W. M. Reichert, “Protein absorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Coll. Inter. Sci. 157, 41-49 (1993).n
    [CrossRef]
  3. J. S. Koo, P. G. R. Smith, R. B. Williams, M. C. Grossel, and M. J. Whitcombe, “Synthesis and characterization of methacrylate-based copolymers for integrated optical applications,” Chem. Mater. 14, 5030-5036 (2002).
    [CrossRef]
  4. Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20, 3096-3106 (2004).
    [CrossRef]
  5. Y. J. Lee, and P. V. Braun, “Tunable inverse opal hydrogel pH sensors,” Adv. Mater. 15, 563-566 (2003).
    [CrossRef]
  6. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hubner, and J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246-6251 (2001).
    [CrossRef]
  7. Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
    [CrossRef] [PubMed]
  8. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  9. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  10. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  11. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13, 612-620 (2005).
    [CrossRef] [PubMed]
  12. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723-725 (2005).
    [CrossRef] [PubMed]
  13. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516-1518 (2001).
    [CrossRef]
  14. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valle, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
    [CrossRef] [PubMed]
  15. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004).
    [CrossRef] [PubMed]
  16. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291-297 (2006).
    [CrossRef] [PubMed]
  17. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200-206 (2008).
    [CrossRef] [PubMed]
  18. L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14, 11901-11909 (2006).
    [CrossRef] [PubMed]
  19. C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVision, Focus Night&Day and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
    [CrossRef]
  20. A. M. Streltsov, and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  21. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
    [CrossRef]
  22. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
    [CrossRef] [PubMed]
  23. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl, Phys. B 81, 1015-1047 (2005).
    [CrossRef]
  24. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).
  25. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
    [CrossRef]
  26. D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse duration from 5 ns to 125 fs,” Appl. Opt. 36, 5630-5640 (1997).
    [CrossRef] [PubMed]
  27. D. Gloge, “Bending loss in multimode fibers with graded and ungraded cor index,” Appl. Opt. 11, 2506-2513 (1972).
    [CrossRef] [PubMed]
  28. M. Popovic, in Integrated Photonics Research (Optical Society of America, 2003), pp. 143-145.
  29. G. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004).
  30. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
    [CrossRef]
  31. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020-1025 (1997).
    [CrossRef]
  32. J. P. R. Lacey, and F. P. Payne, “Radiation loss from planar wave-guides with random wall imperfections,” Proc. Inst. Elect. Eng. 137, 282-288 (1990).
  33. F. P. Payne, and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum. Electron. 26, 977-986 (1994).
    [CrossRef]
  34. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]
  35. F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891-896 (2006).
    [CrossRef]
  36. D. Day, and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939-5946 (2005).
    [CrossRef] [PubMed]
  37. M. Born, and E. Wolf, Principle of Optics (Pergamon, 1970).
  38. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, R. I. Blackwell, D. Jani, and J. F. Kunzler, “Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining,” in Conference on Laser and Electro Optics (CLEO) (Optical Society of America, 2008).
  39. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.
  40. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726-1728 (2001).
    [CrossRef]
  41. S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178-181(2000).
    [CrossRef] [PubMed]

2008 (1)

2006 (3)

2005 (5)

2004 (6)

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVision, Focus Night&Day and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20, 3096-3106 (2004).
[CrossRef]

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valle, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
[CrossRef] [PubMed]

A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004).
[CrossRef] [PubMed]

2003 (2)

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

Y. J. Lee, and P. V. Braun, “Tunable inverse opal hydrogel pH sensors,” Adv. Mater. 15, 563-566 (2003).
[CrossRef]

2002 (3)

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).

J. S. Koo, P. G. R. Smith, R. B. Williams, M. C. Grossel, and M. J. Whitcombe, “Synthesis and characterization of methacrylate-based copolymers for integrated optical applications,” Chem. Mater. 14, 5030-5036 (2002).
[CrossRef]

A. M. Streltsov, and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002).
[CrossRef]

2001 (5)

2000 (1)

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178-181(2000).
[CrossRef] [PubMed]

1999 (2)

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

1997 (2)

1996 (1)

1994 (1)

F. P. Payne, and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum. Electron. 26, 977-986 (1994).
[CrossRef]

1993 (2)

D. S. Walker, K. Balasubramanian, and W. M. Reichert, “Low loss HEMA/EMA copolymer waveguides with a range of wetting and optical properties,” J. Appl. Poly. Sci. 49, 2147-2155 (1993).
[CrossRef]

D. S. Walker, M. D. Garrison, and W. M. Reichert, “Protein absorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Coll. Inter. Sci. 157, 41-49 (1993).n
[CrossRef]

1990 (1)

J. P. R. Lacey, and F. P. Payne, “Radiation loss from planar wave-guides with random wall imperfections,” Proc. Inst. Elect. Eng. 137, 282-288 (1990).

1972 (1)

Agrawal, G.

G. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004).

Aiello, L.

Anderson, N.

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.

Arai, A. Y.

Balasubramanian, K.

D. S. Walker, K. Balasubramanian, and W. M. Reichert, “Low loss HEMA/EMA copolymer waveguides with a range of wetting and optical properties,” J. Appl. Poly. Sci. 49, 2147-2155 (1993).
[CrossRef]

Baldacchini, T.

Birngruber, R.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

Blackwell, R.

Blackwell, R. I.

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, R. I. Blackwell, D. Jani, and J. F. Kunzler, “Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining,” in Conference on Laser and Electro Optics (CLEO) (Optical Society of America, 2008).

Born, M.

M. Born, and E. Wolf, Principle of Optics (Pergamon, 1970).

Borrelli, N. F.

Bovatsek, J.

Braun, P. V.

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20, 3096-3106 (2004).
[CrossRef]

Y. J. Lee, and P. V. Braun, “Tunable inverse opal hydrogel pH sensors,” Adv. Mater. 15, 563-566 (2003).
[CrossRef]

Brodeur, A.

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

Cancado, L. G.

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, R. I. Blackwell, D. Jani, and J. F. Kunzler, “Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining,” in Conference on Laser and Electro Optics (CLEO) (Optical Society of America, 2008).

Cassan, E.

Cerami, L. R.

Cerrina, F.

Cerullo, G.

Chan, J. W.

Chiodo, N.

Choi, T. Y.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

Davis, K. M.

Day, D.

De Nicola, S.

Ding, L.

L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14, 11901-11909 (2006).
[CrossRef] [PubMed]

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, R. I. Blackwell, D. Jani, and J. F. Kunzler, “Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining,” in Conference on Laser and Electro Optics (CLEO) (Optical Society of America, 2008).

Eaton, S. M.

El-Ali, J.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

Engelund, M.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

Ferraro, P.

Finizio, A.

Frenz, M.

Friis, P.

Fujimoto, J. G.

Gaeta, A. L.

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Garrison, M. D.

D. S. Walker, M. D. Garrison, and W. M. Reichert, “Protein absorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Coll. Inter. Sci. 157, 41-49 (1993).n
[CrossRef]

Glezer, E. N.

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).

Gloge, D.

Gotsad, T.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

Grigoropoulos, C. P.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

Grillot, F.

Grossel, M. C.

J. S. Koo, P. G. R. Smith, R. B. Williams, M. C. Grossel, and M. J. Whitcombe, “Synthesis and characterization of methacrylate-based copolymers for integrated optical applications,” Chem. Mater. 14, 5030-5036 (2002).
[CrossRef]

Gu, M.

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse duration from 5 ns to 125 fs,” Appl. Opt. 36, 5630-5640 (1997).
[CrossRef] [PubMed]

Hartl, I.

Herman, P. R.

Hibino, Y.

Hirao, K.

Ho, N.

Homoelle, D.

Hoppe, K.

Hubner, J.

Huser, T.

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl, Phys. B 81, 1015-1047 (2005).
[CrossRef]

Hwang, D. J.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

Ippen, E. P.

Itoh, K.

Jani, D.

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, R. I. Blackwell, D. Jani, and J. F. Kunzler, “Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining,” in Conference on Laser and Electro Optics (CLEO) (Optical Society of America, 2008).

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.

Jansen, E. D.

Jones, L. W.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVision, Focus Night&Day and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Juodkazis, S.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178-181(2000).
[CrossRef] [PubMed]

Karlgard, C. C. S.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVision, Focus Night&Day and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Kim, A.

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).

Kimerling, L. C.

Knox, W. H.

L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14, 11901-11909 (2006).
[CrossRef] [PubMed]

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, R. I. Blackwell, D. Jani, and J. F. Kunzler, “Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining,” in Conference on Laser and Electro Optics (CLEO) (Optical Society of America, 2008).

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.

Kohtoku, M.

Koo, J. S.

J. S. Koo, P. G. R. Smith, R. B. Williams, M. C. Grossel, and M. J. Whitcombe, “Synthesis and characterization of methacrylate-based copolymers for integrated optical applications,” Chem. Mater. 14, 5030-5036 (2002).
[CrossRef]

Kowalevicz, A. M.

Krol, D. M.

Kunzler, J. F.

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, R. I. Blackwell, D. Jani, and J. F. Kunzler, “Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining,” in Conference on Laser and Electro Optics (CLEO) (Optical Society of America, 2008).

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.

Künzler, J. F.

Kutter, J. P.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hubner, and J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246-6251 (2001).
[CrossRef]

Lacey, J. P. R.

F. P. Payne, and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum. Electron. 26, 977-986 (1994).
[CrossRef]

Lacey, P. R.

J. P. R. Lacey, and F. P. Payne, “Radiation loss from planar wave-guides with random wall imperfections,” Proc. Inst. Elect. Eng. 137, 282-288 (1990).

Ladouceur, F.

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020-1025 (1997).
[CrossRef]

Laporta, P.

Laval, S.

Lee, K.

Lee, Y. J.

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20, 3096-3106 (2004).
[CrossRef]

Y. J. Lee, and P. V. Braun, “Tunable inverse opal hydrogel pH sensors,” Adv. Mater. 15, 563-566 (2003).
[CrossRef]

Leistiko, O.

Leung, K. T.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVision, Focus Night&Day and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Lim, D. R.

Lopez, C.

Maselli, V.

Matsuo, S.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178-181(2000).
[CrossRef] [PubMed]

Mazur, E.

C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200-206 (2008).
[CrossRef] [PubMed]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Mendonca, C. R.

Minoshima, K.

Misawa, H.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178-181(2000).
[CrossRef] [PubMed]

Miura, K.

Mogensen, K. B.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hubner, and J. P. Kutter, “Monolithic integration of microfluidic channels and optical waveguides in silica on silicon,” Appl. Opt. 40, 6246-6251 (2001).
[CrossRef]

Moresoli, C.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVision, Focus Night&Day and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Mukai, N.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178-181(2000).
[CrossRef] [PubMed]

Nahen, K.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

Nasu, Y.

Nishii, J.

Nishimura, N.

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl, Phys. B 81, 1015-1047 (2005).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse duration from 5 ns to 125 fs,” Appl. Opt. 36, 5630-5640 (1997).
[CrossRef] [PubMed]

Noojin, G. D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse duration from 5 ns to 125 fs,” Appl. Opt. 36, 5630-5640 (1997).
[CrossRef] [PubMed]

Novotny, L.

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, R. I. Blackwell, D. Jani, and J. F. Kunzler, “Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining,” in Conference on Laser and Electro Optics (CLEO) (Optical Society of America, 2008).

Osellame, R.

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl, Phys. B 81, 1015-1047 (2005).
[CrossRef]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

Payne, F. P.

F. P. Payne, and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum. Electron. 26, 977-986 (1994).
[CrossRef]

J. P. R. Lacey, and F. P. Payne, “Radiation loss from planar wave-guides with random wall imperfections,” Proc. Inst. Elect. Eng. 137, 282-288 (1990).

Perch-Nielsen, I. R.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

Pierattini, G.

Popovic, M.

M. Popovic, in Integrated Photonics Research (Optical Society of America, 2003), pp. 143-145.

Pruzinsky, S. A.

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20, 3096-3106 (2004).
[CrossRef]

Reichert, W. M.

D. S. Walker, M. D. Garrison, and W. M. Reichert, “Protein absorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Coll. Inter. Sci. 157, 41-49 (1993).n
[CrossRef]

D. S. Walker, K. Balasubramanian, and W. M. Reichert, “Low loss HEMA/EMA copolymer waveguides with a range of wetting and optical properties,” J. Appl. Poly. Sci. 49, 2147-2155 (1993).
[CrossRef]

Richardson, K.

Richardson, M.

Risbud, S.

Rivero, C.

Rockwell, B. A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse duration from 5 ns to 125 fs,” Appl. Opt. 36, 5630-5640 (1997).
[CrossRef] [PubMed]

Sarkar, D. K.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVision, Focus Night&Day and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Schulte, A.

Shah, L.

Shih, T.

Shin, J.

Smith, C.

Smith, P. G. R.

J. S. Koo, P. G. R. Smith, R. B. Williams, M. C. Grossel, and M. J. Whitcombe, “Synthesis and characterization of methacrylate-based copolymers for integrated optical applications,” Chem. Mater. 14, 5030-5036 (2002).
[CrossRef]

Snakenborg, D.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

Sowa, S.

Streltsov, A. M.

Sugimoto, N.

Tamaki, T.

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

Thomas, R. J.

Tilghman, R. W.

Valle, R.

Vivien, L.

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl, Phys. B 81, 1015-1047 (2005).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse duration from 5 ns to 125 fs,” Appl. Opt. 36, 5630-5640 (1997).
[CrossRef] [PubMed]

Wakaki, R.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178-181(2000).
[CrossRef] [PubMed]

Walker, D. S.

D. S. Walker, K. Balasubramanian, and W. M. Reichert, “Low loss HEMA/EMA copolymer waveguides with a range of wetting and optical properties,” J. Appl. Poly. Sci. 49, 2147-2155 (1993).
[CrossRef]

D. S. Walker, M. D. Garrison, and W. M. Reichert, “Protein absorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Coll. Inter. Sci. 157, 41-49 (1993).n
[CrossRef]

Wang, Z.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

Watanabe, W.

Welch, A. J.

Whitcombe, M. J.

J. S. Koo, P. G. R. Smith, R. B. Williams, M. C. Grossel, and M. J. Whitcombe, “Synthesis and characterization of methacrylate-based copolymers for integrated optical applications,” Chem. Mater. 14, 5030-5036 (2002).
[CrossRef]

Wielandy, S.

Williams, R. B.

J. S. Koo, P. G. R. Smith, R. B. Williams, M. C. Grossel, and M. J. Whitcombe, “Synthesis and characterization of methacrylate-based copolymers for integrated optical applications,” Chem. Mater. 14, 5030-5036 (2002).
[CrossRef]

Wolf, E.

M. Born, and E. Wolf, Principle of Optics (Pergamon, 1970).

Wolff, A.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

Yamaguchi, A.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178-181(2000).
[CrossRef] [PubMed]

Yin, A.

Yoshino, F.

Zavelani-Rossi, M.

Zhang, H.

Zoubir, A.

Adv. Mater. (1)

Y. J. Lee, and P. V. Braun, “Tunable inverse opal hydrogel pH sensors,” Adv. Mater. 15, 563-566 (2003).
[CrossRef]

Appl, Phys. B (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl, Phys. B 81, 1015-1047 (2005).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (2)

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

Appl. Phys. B (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271-280(1999).
[CrossRef]

Appl. Surf. Sci. (1)

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVision, Focus Night&Day and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Chem. Mater. (1)

J. S. Koo, P. G. R. Smith, R. B. Williams, M. C. Grossel, and M. J. Whitcombe, “Synthesis and characterization of methacrylate-based copolymers for integrated optical applications,” Chem. Mater. 14, 5030-5036 (2002).
[CrossRef]

J. Appl. Poly. Sci. (1)

D. S. Walker, K. Balasubramanian, and W. M. Reichert, “Low loss HEMA/EMA copolymer waveguides with a range of wetting and optical properties,” J. Appl. Poly. Sci. 49, 2147-2155 (1993).
[CrossRef]

J. Coll. Inter. Sci. (1)

D. S. Walker, M. D. Garrison, and W. M. Reichert, “Protein absorption to HEMA/EMA copolymers studied by integrated optical techniques,” J. Coll. Inter. Sci. 157, 41-49 (1993).n
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Lab Chip (1)

Z. Wang, J. El-Ali, M. Engelund, T. Gotsad, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4, 372-377 (2004).
[CrossRef] [PubMed]

Langmuir (1)

Y. J. Lee, S. A. Pruzinsky, and P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response,” Langmuir 20, 3096-3106 (2004).
[CrossRef]

Nature (1)

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178-181(2000).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (9)

Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723-725 (2005).
[CrossRef] [PubMed]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valle, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
[CrossRef] [PubMed]

A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004).
[CrossRef] [PubMed]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516-1518 (2001).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726-1728 (2001).
[CrossRef]

K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888-1890 (2001).
[CrossRef]

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Opt. Quantum. Electron. (1)

F. P. Payne, and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum. Electron. 26, 977-986 (1994).
[CrossRef]

Proc. Inst. Elect. Eng. (1)

J. P. R. Lacey, and F. P. Payne, “Radiation loss from planar wave-guides with random wall imperfections,” Proc. Inst. Elect. Eng. 137, 282-288 (1990).

Other (6)

M. Born, and E. Wolf, Principle of Optics (Pergamon, 1970).

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, R. I. Blackwell, D. Jani, and J. F. Kunzler, “Raman spectroscopic study of silicone-based hydrogel polymers with large index changes induced by femtosecond laser micromachining,” in Conference on Laser and Electro Optics (CLEO) (Optical Society of America, 2008).

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, R. I. Blackwell, and J. F. Kunzler, “Micro-Raman spectroscopic study of silicone-based hydrogel polymers modified by megahertz femtosecond laser pulses,” to be submitted.

M. Popovic, in Integrated Photonics Research (Optical Society of America, 2003), pp. 143-145.

G. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004).

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fabrication and characterization of waveguides in hydrogel. (a) By translating the 3-D stage, tightly focused 27 fs laser pulses can be used to micromachine waveguides inside the hydrogel. (b) Tapered lensed fiber is used to couple 632.8 nm He–Ne laser light into the waveguides.

Fig. 2
Fig. 2

Optical microscope top view of a horizontal waveguide in PV2526-164. (a) Using the DIC mode and 20 × magnification of the microscope. (b) Scattered light along the waveguide when He–Ne laser light was coupled into the waveguide.

Fig. 3
Fig. 3

Coupling He–Ne laser light into curved waveguides. (a) Curved waveguide in the X Y plane, (b) Curved waveguide in the X Z plane, the shining spot on the right is the light output exiting from the top surface of the hydrogel.

Fig. 4
Fig. 4

(a) Near-field intensity profile of the output light at 632.8 nm as it exits the waveguide in the PV2526-164 hydrogel. The diamonds correspond to a cross section of the intensity distribution, and the curve represents a best-fit Gaussian. (b) Log plot scattered light intensity versus distance along the horizontal waveguide in Fig. 2.

Fig. 5
Fig. 5

(a) Phase contrast image of a waveguide in PV hydrogel with 60 × magnification. There is obvious surface microscopic roughness along the waveguide. (b) Sidewall roughness of a 20 μm long part of the waveguide in PV hydrogel. (c) Phase contrast image of a micromachined waveguide in silicone elastomer with 60 × magnification. Less roughness is observed. (d) Sidewall roughness of a 20 μm long part of the waveguide in silicone elastomer.

Fig. 6
Fig. 6

(a) Calculated scattering loss of different modes propagation in the PV hydrogel waveguides (m is the mode order). (b) Calculated scattering loss of TE0 mode of different width waveguides for sidewall roughness of 115 nm (dashed line), and experimental measurements of the scattering loss of different width waveguides (the triangles).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α = 2 γ 2 ( 0 ) n k exp [ 2 3 n k R ( γ 2 ( 0 ) n 2 k 2 2 a R ) 3 / 2 ] ,
α = σ 2 2 k 0 d 4 n 1 g ( V ) f e ( x , γ ) ,

Metrics