Abstract

The design and performance of a miniaturized magneto-optic probe using a terbium doped paramagnetic glass are described. The compactness and simplicity of the device are achieved by using the polarizer sheets obtained from a commonly available liquid crystal display. Plastic optical fibers are used to transport the light. A pulsed magnetic field up to 48T has been generated and measured using high-voltage capacitor discharge in single-turn coils. A rise time and magnetic field-dependent anomalous behavior is observed in the terbium glass characteristics at room temperature.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. N. Gennadiev and V. F. Demichev, and P. A. Levit, “Production and measurement of megagauss magnetic fields in single turn coils,” Megagauss Physics and Technology, P. J. Turchi, ed. (Plenum, 1980), pp. 27-36.
  2. O. Portugall, N. Puhlmann, H. U. Muller, M. Barczewski, I. Stolpe, and M von Ortenberg, “Megagauss magnetic field generation in single turn coils: new frontiers for scientific experiments,” J. Phys D: Appl. Phys. 32, 2354-2366 (1999).
    [CrossRef]
  3. M. N. Deeter, “Fiber-optic Faraday-effect magnetic field sensor based on flux concentrators,” Appl. Opt. 35, 154-157 (1996)
    [CrossRef] [PubMed]
  4. N. Itoh, H. Minemoto, D. Ishiko, and S. Ishizuka, “Small optical magnetic-field sensor that uses rare-earth iron garnet films based on Faraday effect,” Appl. Opt. 38, 2047-2052(1999).
    [CrossRef]
  5. K. Sato, K. Yamaguchi, F. Maruyama, and N. Nishi, “Anomalous magnetic properties of heavily Tb-doped glasses,” Phys. Rev. B 63, 104416 (2001).
    [CrossRef]

2001 (1)

K. Sato, K. Yamaguchi, F. Maruyama, and N. Nishi, “Anomalous magnetic properties of heavily Tb-doped glasses,” Phys. Rev. B 63, 104416 (2001).
[CrossRef]

1999 (2)

N. Itoh, H. Minemoto, D. Ishiko, and S. Ishizuka, “Small optical magnetic-field sensor that uses rare-earth iron garnet films based on Faraday effect,” Appl. Opt. 38, 2047-2052(1999).
[CrossRef]

O. Portugall, N. Puhlmann, H. U. Muller, M. Barczewski, I. Stolpe, and M von Ortenberg, “Megagauss magnetic field generation in single turn coils: new frontiers for scientific experiments,” J. Phys D: Appl. Phys. 32, 2354-2366 (1999).
[CrossRef]

1996 (1)

Barczewski, M.

O. Portugall, N. Puhlmann, H. U. Muller, M. Barczewski, I. Stolpe, and M von Ortenberg, “Megagauss magnetic field generation in single turn coils: new frontiers for scientific experiments,” J. Phys D: Appl. Phys. 32, 2354-2366 (1999).
[CrossRef]

Deeter, M. N.

Demichev, V. F.

N. N. Gennadiev and V. F. Demichev, and P. A. Levit, “Production and measurement of megagauss magnetic fields in single turn coils,” Megagauss Physics and Technology, P. J. Turchi, ed. (Plenum, 1980), pp. 27-36.

Gennadiev, N. N.

N. N. Gennadiev and V. F. Demichev, and P. A. Levit, “Production and measurement of megagauss magnetic fields in single turn coils,” Megagauss Physics and Technology, P. J. Turchi, ed. (Plenum, 1980), pp. 27-36.

Ishiko, D.

Ishizuka, S.

Itoh, N.

Levit, P. A.

N. N. Gennadiev and V. F. Demichev, and P. A. Levit, “Production and measurement of megagauss magnetic fields in single turn coils,” Megagauss Physics and Technology, P. J. Turchi, ed. (Plenum, 1980), pp. 27-36.

Maruyama, F.

K. Sato, K. Yamaguchi, F. Maruyama, and N. Nishi, “Anomalous magnetic properties of heavily Tb-doped glasses,” Phys. Rev. B 63, 104416 (2001).
[CrossRef]

Minemoto, H.

Muller, H. U.

O. Portugall, N. Puhlmann, H. U. Muller, M. Barczewski, I. Stolpe, and M von Ortenberg, “Megagauss magnetic field generation in single turn coils: new frontiers for scientific experiments,” J. Phys D: Appl. Phys. 32, 2354-2366 (1999).
[CrossRef]

Nishi, N.

K. Sato, K. Yamaguchi, F. Maruyama, and N. Nishi, “Anomalous magnetic properties of heavily Tb-doped glasses,” Phys. Rev. B 63, 104416 (2001).
[CrossRef]

Portugall, O.

O. Portugall, N. Puhlmann, H. U. Muller, M. Barczewski, I. Stolpe, and M von Ortenberg, “Megagauss magnetic field generation in single turn coils: new frontiers for scientific experiments,” J. Phys D: Appl. Phys. 32, 2354-2366 (1999).
[CrossRef]

Puhlmann, N.

O. Portugall, N. Puhlmann, H. U. Muller, M. Barczewski, I. Stolpe, and M von Ortenberg, “Megagauss magnetic field generation in single turn coils: new frontiers for scientific experiments,” J. Phys D: Appl. Phys. 32, 2354-2366 (1999).
[CrossRef]

Sato, K.

K. Sato, K. Yamaguchi, F. Maruyama, and N. Nishi, “Anomalous magnetic properties of heavily Tb-doped glasses,” Phys. Rev. B 63, 104416 (2001).
[CrossRef]

Stolpe, I.

O. Portugall, N. Puhlmann, H. U. Muller, M. Barczewski, I. Stolpe, and M von Ortenberg, “Megagauss magnetic field generation in single turn coils: new frontiers for scientific experiments,” J. Phys D: Appl. Phys. 32, 2354-2366 (1999).
[CrossRef]

von Ortenberg, M

O. Portugall, N. Puhlmann, H. U. Muller, M. Barczewski, I. Stolpe, and M von Ortenberg, “Megagauss magnetic field generation in single turn coils: new frontiers for scientific experiments,” J. Phys D: Appl. Phys. 32, 2354-2366 (1999).
[CrossRef]

Yamaguchi, K.

K. Sato, K. Yamaguchi, F. Maruyama, and N. Nishi, “Anomalous magnetic properties of heavily Tb-doped glasses,” Phys. Rev. B 63, 104416 (2001).
[CrossRef]

Appl. Opt. (2)

J. Phys D: Appl. Phys. (1)

O. Portugall, N. Puhlmann, H. U. Muller, M. Barczewski, I. Stolpe, and M von Ortenberg, “Megagauss magnetic field generation in single turn coils: new frontiers for scientific experiments,” J. Phys D: Appl. Phys. 32, 2354-2366 (1999).
[CrossRef]

Phys. Rev. B (1)

K. Sato, K. Yamaguchi, F. Maruyama, and N. Nishi, “Anomalous magnetic properties of heavily Tb-doped glasses,” Phys. Rev. B 63, 104416 (2001).
[CrossRef]

Other (1)

N. N. Gennadiev and V. F. Demichev, and P. A. Levit, “Production and measurement of megagauss magnetic fields in single turn coils,” Megagauss Physics and Technology, P. J. Turchi, ed. (Plenum, 1980), pp. 27-36.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Photographic view of the Faraday probe.

Fig. 2
Fig. 2

Calibration curve for the solenoid.

Fig. 3
Fig. 3

Faraday probe measurements with a 200 μs rise-time bank.

Fig. 4
Fig. 4

Faraday probe measurements with a 2.2 μs rise-time bank.

Fig. 5
Fig. 5

Oscilloscope records of the Faraday probe and integrated output of a dB / dt probe with a 2.2 μs rise-time bank (Ch2 is the integrated output of the dB / dt probe, and Ch3 is the Faraday probe output).

Fig. 6
Fig. 6

Oscilloscope records of the Faraday probe and integrated output of the dB / dt probe with a 7.6 μs rise-time bank (Ch3 is the current, Ch2 is the Faraday probe output with ϕ = 0 ° , Ch4 is the Faraday probe output with ϕ = 90 ° ).

Fig. 7
Fig. 7

Schematic diagram of experimental setup for high-pulsed magnetic field generation (PD is the photodiode and M.O. is the microscope objective).

Fig. 8
Fig. 8

Oscilloscope records of the Faraday probe and integrated output of the dB / dt probe with a 3.68 μs rise-time bank (Ch3 is the current, Ch2 is the integrated output of the dB / dt probe, and Ch3 is the Faraday probe output).

Fig. 9
Fig. 9

Time variation of magnetic field as measured by two probes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ = 0 L V B ( l ) d l ,
B ( t ) = θ ( t ) V . L .
I t = I 0 cos 2 ( θ + ϕ ) ,

Metrics