Abstract

We propose an optical configuration of a twisted nematic liquid crystal device driven by a fringe field for a single-cell-gap transflective display. The dark state of the reflective part is realized by a nematic liquid crystal layer with a twist angle of 63.6° and retardation of 194nm, while a quarter-wave plate is inserted for the dark state of the transmissive part. Wavelength dispersion of the liquid crystal layer is suppressed by introducing a half-wave plate. Different directions of electric fields rotate liquid crystals to 15° for the bright state of the reflective part, but to 30° for that of the transmissive part. With the proposed configuration, we can realize a high-brightness single-gamma transflective display in a single-cell-gap structure without any in-cell retardation layers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895-3897 (1995).
    [CrossRef]
  2. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73, 2881 (1998).
    [CrossRef]
  3. J. H. Song, Y. J. Lim, M.-H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87, 011108 (2005).
    [CrossRef]
  4. J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y Kim, and Y. J. Lim, “Novel transflective display with fringe-field switching mode,” Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
    [CrossRef]
  5. K.-H. Park, J. C. Kim, and T.-H. Yoon, “Horizontal switching of half-wave liquid crystal cell for transflective display,” Jpn. J. Appl. Phys. 44, 210-215 (2005).
    [CrossRef]
  6. G. S. Lee, J. C. Kim, and T.-H. Yoon, “Horizontal switching double-cellgap liquid crystal cell for superachromatic transflevtive display,” Jpn. J. Appl. Phys. 45, 8769-8774(2006).
    [CrossRef]
  7. O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
    [CrossRef]
  8. S.-T. Wu and D.-K. Yang, “Twisted nematic cells: reflective MTN cells,” in Reflective Liquid Crystal Displays (Wiley, 2001), pp. 104-105.
  9. P. Yeh and C. Gu, “Jones matrix method: optical properties of a twisted nematic liquid crystal (TN-LC),” in Optics of Liquid Crystal Displays (Wiley, 1999), pp. 119-122.
  10. T.-H. Yoon, G. D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25, 1547-1549 (2000).
    [CrossRef]
  11. D. Goldstein, “The Muller matrices for polarizing components: Muller matrices for rotated polarizing components,” in Polarized Light, 2nd ed. (Marcel Dekker, 2003), pp. 77-83.
  12. S. T. Tang and H. S. Kwok, “Muller calculus and perfect polarization conversion in liquid crystal displays,” J. Appl. Phys. 89, 5288 (2001).
    [CrossRef]

2006

G. S. Lee, J. C. Kim, and T.-H. Yoon, “Horizontal switching double-cellgap liquid crystal cell for superachromatic transflevtive display,” Jpn. J. Appl. Phys. 45, 8769-8774(2006).
[CrossRef]

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

2005

J. H. Song, Y. J. Lim, M.-H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87, 011108 (2005).
[CrossRef]

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y Kim, and Y. J. Lim, “Novel transflective display with fringe-field switching mode,” Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

K.-H. Park, J. C. Kim, and T.-H. Yoon, “Horizontal switching of half-wave liquid crystal cell for transflective display,” Jpn. J. Appl. Phys. 44, 210-215 (2005).
[CrossRef]

2001

S. T. Tang and H. S. Kwok, “Muller calculus and perfect polarization conversion in liquid crystal displays,” J. Appl. Phys. 89, 5288 (2001).
[CrossRef]

2000

1998

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73, 2881 (1998).
[CrossRef]

1995

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

Goldstein, D.

D. Goldstein, “The Muller matrices for polarizing components: Muller matrices for rotated polarizing components,” in Polarized Light, 2nd ed. (Marcel Dekker, 2003), pp. 77-83.

Gu, C.

P. Yeh and C. Gu, “Jones matrix method: optical properties of a twisted nematic liquid crystal (TN-LC),” in Optics of Liquid Crystal Displays (Wiley, 1999), pp. 119-122.

Hirota, S.

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Imayama, H.

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Itou, O.

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Jeong, Y. H.

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y Kim, and Y. J. Lim, “Novel transflective display with fringe-field switching mode,” Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

Kim, H. Y.

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y Kim, and Y. J. Lim, “Novel transflective display with fringe-field switching mode,” Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73, 2881 (1998).
[CrossRef]

Kim, J. C.

G. S. Lee, J. C. Kim, and T.-H. Yoon, “Horizontal switching double-cellgap liquid crystal cell for superachromatic transflevtive display,” Jpn. J. Appl. Phys. 45, 8769-8774(2006).
[CrossRef]

K.-H. Park, J. C. Kim, and T.-H. Yoon, “Horizontal switching of half-wave liquid crystal cell for transflective display,” Jpn. J. Appl. Phys. 44, 210-215 (2005).
[CrossRef]

T.-H. Yoon, G. D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25, 1547-1549 (2000).
[CrossRef]

Kim, S. Y

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y Kim, and Y. J. Lim, “Novel transflective display with fringe-field switching mode,” Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

Komura, S.

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Kondo, K.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

Kwok, H. S.

S. T. Tang and H. S. Kwok, “Muller calculus and perfect polarization conversion in liquid crystal displays,” J. Appl. Phys. 89, 5288 (2001).
[CrossRef]

Lee, G. D.

Lee, G. S.

G. S. Lee, J. C. Kim, and T.-H. Yoon, “Horizontal switching double-cellgap liquid crystal cell for superachromatic transflevtive display,” Jpn. J. Appl. Phys. 45, 8769-8774(2006).
[CrossRef]

Lee, M.-H.

J. H. Song, Y. J. Lim, M.-H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87, 011108 (2005).
[CrossRef]

Lee, S. H.

J. H. Song, Y. J. Lim, M.-H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87, 011108 (2005).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73, 2881 (1998).
[CrossRef]

Lee, S. L.

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73, 2881 (1998).
[CrossRef]

Lim, Y. J.

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y Kim, and Y. J. Lim, “Novel transflective display with fringe-field switching mode,” Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

J. H. Song, Y. J. Lim, M.-H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87, 011108 (2005).
[CrossRef]

Miyazawa, T.

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Morimoto, M.

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Nagata, T.

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Ochiai, T.

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Oh-e, M.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

Park, J. B.

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y Kim, and Y. J. Lim, “Novel transflective display with fringe-field switching mode,” Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

Park, K.-H.

K.-H. Park, J. C. Kim, and T.-H. Yoon, “Horizontal switching of half-wave liquid crystal cell for transflective display,” Jpn. J. Appl. Phys. 44, 210-215 (2005).
[CrossRef]

Sekiguchi, Y.

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Shin, S. T.

J. H. Song, Y. J. Lim, M.-H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87, 011108 (2005).
[CrossRef]

Song, J. H.

J. H. Song, Y. J. Lim, M.-H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87, 011108 (2005).
[CrossRef]

Tang, S. T.

S. T. Tang and H. S. Kwok, “Muller calculus and perfect polarization conversion in liquid crystal displays,” J. Appl. Phys. 89, 5288 (2001).
[CrossRef]

Tanno, J.

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Wu, S.-T.

S.-T. Wu and D.-K. Yang, “Twisted nematic cells: reflective MTN cells,” in Reflective Liquid Crystal Displays (Wiley, 2001), pp. 104-105.

Yang, D.-K.

S.-T. Wu and D.-K. Yang, “Twisted nematic cells: reflective MTN cells,” in Reflective Liquid Crystal Displays (Wiley, 2001), pp. 104-105.

Yeh, P.

P. Yeh and C. Gu, “Jones matrix method: optical properties of a twisted nematic liquid crystal (TN-LC),” in Optics of Liquid Crystal Displays (Wiley, 1999), pp. 119-122.

Yoon, T.-H.

G. S. Lee, J. C. Kim, and T.-H. Yoon, “Horizontal switching double-cellgap liquid crystal cell for superachromatic transflevtive display,” Jpn. J. Appl. Phys. 45, 8769-8774(2006).
[CrossRef]

K.-H. Park, J. C. Kim, and T.-H. Yoon, “Horizontal switching of half-wave liquid crystal cell for transflective display,” Jpn. J. Appl. Phys. 44, 210-215 (2005).
[CrossRef]

T.-H. Yoon, G. D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25, 1547-1549 (2000).
[CrossRef]

Appl. Phys. Lett.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73, 2881 (1998).
[CrossRef]

J. H. Song, Y. J. Lim, M.-H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87, 011108 (2005).
[CrossRef]

J. Appl. Phys.

S. T. Tang and H. S. Kwok, “Muller calculus and perfect polarization conversion in liquid crystal displays,” J. Appl. Phys. 89, 5288 (2001).
[CrossRef]

Jpn. J. Appl. Phys.

J. B. Park, H. Y. Kim, Y. H. Jeong, S. Y Kim, and Y. J. Lim, “Novel transflective display with fringe-field switching mode,” Jpn. J. Appl. Phys. 44, 7524-7527 (2005).
[CrossRef]

K.-H. Park, J. C. Kim, and T.-H. Yoon, “Horizontal switching of half-wave liquid crystal cell for transflective display,” Jpn. J. Appl. Phys. 44, 210-215 (2005).
[CrossRef]

G. S. Lee, J. C. Kim, and T.-H. Yoon, “Horizontal switching double-cellgap liquid crystal cell for superachromatic transflevtive display,” Jpn. J. Appl. Phys. 45, 8769-8774(2006).
[CrossRef]

Opt. Lett.

SID Int. Symp. Digest of Tech. Papers

O. Itou, S. Hirota, Y. Sekiguchi, S. Komura, M. Morimoto, J. Tanno, T. Ochiai, H. Imayama, T. Nagata, and T. Miyazawa, “A wide viewing angle transflective IPS LCD applying new optical design,” SID Int. Symp. Digest of Tech. Papers 37, 832-835 (2006).
[CrossRef]

Other

S.-T. Wu and D.-K. Yang, “Twisted nematic cells: reflective MTN cells,” in Reflective Liquid Crystal Displays (Wiley, 2001), pp. 104-105.

P. Yeh and C. Gu, “Jones matrix method: optical properties of a twisted nematic liquid crystal (TN-LC),” in Optics of Liquid Crystal Displays (Wiley, 1999), pp. 119-122.

D. Goldstein, “The Muller matrices for polarizing components: Muller matrices for rotated polarizing components,” in Polarized Light, 2nd ed. (Marcel Dekker, 2003), pp. 77-83.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Operational principle of horizontal switching modes (T, transmittance). (a) FFS mode; (b) IPS mode.

Fig. 2
Fig. 2

Contour map of the reflection at the wavelength 550 nm in a reflective TN cell with the retardation and the twist angle as variables.

Fig. 3
Fig. 3

Optical configuration of the proposed transflective display device. (a) Dark state; (b) bright state.

Fig. 4
Fig. 4

Reflection and transmission spectra of the proposed transflective device without compensation.

Fig. 5
Fig. 5

Suppression of wavelength dispersion obtained by inserting a HWP, shown on the Poincaré sphere. (a) TN LC layer only; (b) TN LC layer with a HWP.

Fig. 6
Fig. 6

Polarization deviation as a function of the wavelength.

Fig. 7
Fig. 7

Reflection and transmission spectra of a compensated transflective device. (a) Calculated and (b) measured results.

Fig. 8
Fig. 8

Optical configuration of a compensated transflective display device. (a) Dark state; (b) bright state).

Fig. 9
Fig. 9

Operating voltage and peak reflectance (transmittance) of compensated transflective LC devices. (a) Reflective part; (b) transmissive part.

Fig. 10
Fig. 10

Twist deformation of LCs at the bright state. (a) Reflective part; (b) transmissive part.

Fig. 11
Fig. 11

Electro-optic characteristics of a compensated transflective LC device. (a) Calculated and (b) measured results.

Fig. 12
Fig. 12

Calculated isocontrast contour of a compensated transflective LC device. (a) Reflective part; (b) transmissive part.

Fig. 13
Fig. 13

Top view of the FFS electrode structure optimized for high brightness and single gamma.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M = ( cos X i Γ 2 sin X X φ sin X X φ sin X X cos X + i Γ 2 sin X X ) , X = φ 2 + ( Γ 2 ) 2 , Γ = 2 π λ ( n e n o ) d = 2 π λ Δ n d ,
R = | ( cos α sin α ) M ( φ ) M ( φ ) ( cos α sin α ) |
Δ S = cos 1 ( [ 2 ( S 1 2 + S 2 2 + ( S 3 + 1 ) 2 ) 1 / 2 ] 2 )
| T | = 1 2 ε 0 | Δ ε | E 0 2 sin 2 β ,

Metrics