Abstract

We present a novel approach for three-dimensional (3D) measurements that includes the projection of coherent light through ground glass. Such a projection generates random speckle patterns on the object or on the camera, depending if the configuration is transmissive or reflective. In both cases the spatially random patterns are seen by the sensor. Different spatially random patterns are generated at different planes. The patterns are highly random and not correlated. This low correlation between different patterns is used for both 3D mapping of objects and range finding.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
    [CrossRef]
  2. M. Sjödal and P. Synnergren, “Measurement of shape by using projected random patterns and temporal digital speckle photography,” Appl. Opt. 38, 1990-1997 (1999).
    [CrossRef]
  3. H. Farid and E. P. Simoncelli, “Range estimation by optical differentiation,” J. Opt. Soc. Am. A 15, 1777-1786 (1998).
    [CrossRef]
  4. J. S. Chahl and M. V. Srinivasen, “Range estimation with a panoramic visual sensor,” J. Opt. Soc. Am. A 14, 2144-2151(1997).
    [CrossRef]
  5. R. E. Brooks and L. O. Heflinger, “Moiré gauging using optical interference patterns,” Appl. Opt. 8, 935-939 (1969).
  6. G. Indebetouw, “Profile measurement using projection of running fringes,” Appl. Opt. 17, 2930-2933 (1978).
  7. T. Dressel, G. Hausler, and H. Venzhe, “Three dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919-925 (1992).
  8. G. R. Hallerman and L. G. Shirley, “A comparison of surface contour measurements based on speckle pattern sampling and coordinate measurement machines,” Proc. SPIE 2909, 89-97 (1997).
    [CrossRef]
  9. B. P. Hildebrand and K. A. Haines, “Multiple-wavelength and multiple-source holography applied to contour generation,” J. Opt. Soc. Am. 57, 155-162 (1967).
  10. N. Abramson, “Holographic contouring by translation,” Appl. Opt. 15, 1018 (1976).
  11. J. C. Dainty, Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, 1989).
  12. J. W. Goodman, Speckle Phenomena in Optics (Roberts and Co., 2006).
  13. J. W. Goodman, Statistical Optics (Wiley, 1985).
  14. H. M. Pedersen, “Intensity correlation metrology: a comparative study,” Opt. Acta 29, 105-118 (1982).
  15. J. A. Leedertz, “Interferometric displacement measurements on scattering surfaces utilizing speckle effects,” J. Phys. E 3, 214-218 (1970).
    [CrossRef]
  16. P. K. Rastogi and P. Jacquot, “Measurement on difference deformation using speckle interferometry,” Opt. Lett. 12, 596-598 (1987).
  17. M. Sjödahl, “Calculation of speckle displacement, decorrelation and object point location in imaging systems,” Appl. Opt. 34, 7998-8010 (1995).
  18. M. Sjödahl, “Electronic speckle photography: increased accuracy by non-integral pixel shifting,” Appl. Opt. 33, 6667-6673(1994).
  19. J. A. Mendez and M. L. Roblin, “Relation entre les intensities lumineuses produites par un diffuseur dans deux plans paralleles,” Opt. Commun. 11, 245-250 (1974).
    [CrossRef]
  20. L. Leushacke and M. Kirchner, “Three dimensional correlation coefficient of speckle intensity for rectangular and circular apertures,” J. Opt. Soc. Am. A 7, 827-833 (1990).
  21. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), Chap. 8, p. 491.

2000 (1)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (2)

J. S. Chahl and M. V. Srinivasen, “Range estimation with a panoramic visual sensor,” J. Opt. Soc. Am. A 14, 2144-2151(1997).
[CrossRef]

G. R. Hallerman and L. G. Shirley, “A comparison of surface contour measurements based on speckle pattern sampling and coordinate measurement machines,” Proc. SPIE 2909, 89-97 (1997).
[CrossRef]

1995 (1)

1994 (1)

1992 (1)

1990 (1)

1987 (1)

1982 (1)

H. M. Pedersen, “Intensity correlation metrology: a comparative study,” Opt. Acta 29, 105-118 (1982).

1978 (1)

1976 (1)

1974 (1)

J. A. Mendez and M. L. Roblin, “Relation entre les intensities lumineuses produites par un diffuseur dans deux plans paralleles,” Opt. Commun. 11, 245-250 (1974).
[CrossRef]

1970 (1)

J. A. Leedertz, “Interferometric displacement measurements on scattering surfaces utilizing speckle effects,” J. Phys. E 3, 214-218 (1970).
[CrossRef]

1969 (1)

1967 (1)

Abramson, N.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), Chap. 8, p. 491.

Brooks, R. E.

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Chahl, J. S.

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Dainty, J. C.

J. C. Dainty, Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, 1989).

Dressel, T.

Farid, H.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics (Roberts and Co., 2006).

J. W. Goodman, Statistical Optics (Wiley, 1985).

Haines, K. A.

Hallerman, G. R.

G. R. Hallerman and L. G. Shirley, “A comparison of surface contour measurements based on speckle pattern sampling and coordinate measurement machines,” Proc. SPIE 2909, 89-97 (1997).
[CrossRef]

Hausler, G.

Heflinger, L. O.

Hildebrand, B. P.

Indebetouw, G.

Jacquot, P.

Kirchner, M.

Leedertz, J. A.

J. A. Leedertz, “Interferometric displacement measurements on scattering surfaces utilizing speckle effects,” J. Phys. E 3, 214-218 (1970).
[CrossRef]

Leushacke, L.

Mendez, J. A.

J. A. Mendez and M. L. Roblin, “Relation entre les intensities lumineuses produites par un diffuseur dans deux plans paralleles,” Opt. Commun. 11, 245-250 (1974).
[CrossRef]

Pedersen, H. M.

H. M. Pedersen, “Intensity correlation metrology: a comparative study,” Opt. Acta 29, 105-118 (1982).

Rastogi, P. K.

Roblin, M. L.

J. A. Mendez and M. L. Roblin, “Relation entre les intensities lumineuses produites par un diffuseur dans deux plans paralleles,” Opt. Commun. 11, 245-250 (1974).
[CrossRef]

Shirley, L. G.

G. R. Hallerman and L. G. Shirley, “A comparison of surface contour measurements based on speckle pattern sampling and coordinate measurement machines,” Proc. SPIE 2909, 89-97 (1997).
[CrossRef]

Simoncelli, E. P.

Sjödahl, M.

Sjödal, M.

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Srinivasen, M. V.

Synnergren, P.

Venzhe, H.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), Chap. 8, p. 491.

Appl. Opt. (7)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Phys. E (1)

J. A. Leedertz, “Interferometric displacement measurements on scattering surfaces utilizing speckle effects,” J. Phys. E 3, 214-218 (1970).
[CrossRef]

Opt. Acta (1)

H. M. Pedersen, “Intensity correlation metrology: a comparative study,” Opt. Acta 29, 105-118 (1982).

Opt. Commun. (1)

J. A. Mendez and M. L. Roblin, “Relation entre les intensities lumineuses produites par un diffuseur dans deux plans paralleles,” Opt. Commun. 11, 245-250 (1974).
[CrossRef]

Opt. Eng. (1)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

G. R. Hallerman and L. G. Shirley, “A comparison of surface contour measurements based on speckle pattern sampling and coordinate measurement machines,” Proc. SPIE 2909, 89-97 (1997).
[CrossRef]

Other (4)

J. C. Dainty, Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, 1989).

J. W. Goodman, Speckle Phenomena in Optics (Roberts and Co., 2006).

J. W. Goodman, Statistical Optics (Wiley, 1985).

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), Chap. 8, p. 491.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Variation of the speckle pattern in Plane G when the ground object is axially shifted through Δ z .

Fig. 2
Fig. 2

Setup for transmissive object 3D mapping.

Fig. 3
Fig. 3

Calibration reference readout for the transmissive microscopic configuration of 3D mapping using speckles random coding. (a) Speckle pattern without any glass in the optical path. (b) Speckle pattern when one glass slide is inserted into the optical path. (c) Speckle pattern when two glass slides are inserted into the optical path. (d) Speckle pattern when three glass slides are inserted into the optical path. Each slide is 0.5 mm thick. The insets show a magnified portion of the same region for each figure.

Fig. 4
Fig. 4

Captured image containing (a) the input pattern that contains a structure of transmissive glasses with widths of zero, one, and two slides (each slide is 0.5 mm thick), and (b) the image captured by the CCD camera when projected with speckles pattern.

Fig. 5
Fig. 5

Segmentation of different regions by absolute value of subtraction between the captured patterns and the reference patterns. (a) Segmentation of Region 0. (b) Segmentation of Region 1. (c) Segmentation of Region 2.

Fig. 6
Fig. 6

Optical setup for the range estimation.

Fig. 7
Fig. 7

Reflective speckle patterns used for range finding. (a) The reflected reference speckle pattern corresponds to a plane positioned 80 cm from the camera. The inset is a magnified region. (b) An autocorrelation between the reflected speckles pattern from a certain plane. (c) Cross correlation of speckle patterns reflected from two planes separated by 5 mm .

Fig. 8
Fig. 8

Range finding results. The cross correlation intensities of the combinations of the reflected patterns from all possible 11 planes positioned at a regular spacing of 5 mm .

Fig. 9
Fig. 9

Variation of the mean and confidence interval at one standard deviation for the autocorrelation and cross correlation of varying size of circular regions.

Fig. 10
Fig. 10

(a) Object illuminated with the projected speckles pattern. (b) 3D reconstruction.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

U ( ξ , η ) = g ( x , y ) exp ( j π λ z [ ( ξ x ) 2 + ( η y ) 2 ] ) d x d y ,
I ( ξ , η ) = | g ( x , y ) exp ( j π λ z [ x 2 + y 2 ] ) exp ( j 2 π λ z [ ξ x + η y ] ) d x d y | 2 .
I ( ξ , η ) = | g ( x , y ) exp ( j π λ z [ x 2 + y 2 ] ) × exp ( j π Δ z λ z 2 [ x 2 + y 2 ] ) exp ( j 2 π λ z [ ξ ( 1 + Δ z z ) x + η ( 1 + Δ z z ) y ] ) d x d y | 2 .
Γ A T ( Δ ξ , Δ η ) = + I ( x , y ) exp [ j 2 π λ ( x Δ ξ + y Δ η ) ] d x d y .
Γ IT ( Δ ξ , Δ η ) = I ¯ 2 { 1 + | + I ( x , y ) exp [ j 2 π λ ( x Δ ξ + y Δ η ) ] d x d y + I ( x , y ) d x d y | } ,
Γ IT ( r ) = I ¯ 2 [ 1 + 2 | J 1 ( π Φ s λ z ) π Φ s λ z | ] ,
S T = 1.22 λ z Φ .
Γ IL ( Δ z ) = I ¯ 2 [ 1 + 2 | sin c ( Φ 2 8 λ z 2 Δ z ) | ] .
S L = 8 λ ( z Φ ) 2 ,
ν c = Φ 2 λ z .

Metrics