Abstract

We present a low cost terahertz (THz) spectrometer with coherent detection based on two simple and robust dipole antennas driven by two laser diodes. The spectrometer covers frequencies up to 1THz, with a peak signal-to-noise ratio exceeding 40dB for a lock-in integration time of 30ms. We demonstrate that the thickness profile of a sample can be reconstructed from an acquired THz image.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807-3814(2002).
    [CrossRef] [PubMed]
  2. M. R. Kutteruf, C. M. Brown, L. K. Iwaki, M. B. Campbell, T. M. Korter, and E. J. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett. 375, 337-343(2003).
    [CrossRef]
  3. K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549-2554 (2003).
    [CrossRef] [PubMed]
  4. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21, 2145-2153 (2003).
    [CrossRef]
  5. S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614-618 (2007).
    [CrossRef]
  6. N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
    [CrossRef]
  7. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285-287 (1995).
    [CrossRef]
  8. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
    [CrossRef]
  9. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824-3826 (1998).
    [CrossRef]
  10. A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524-2526 (1999).
    [CrossRef]
  11. P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode,” Jpn. J. Appl. Phys. 37, 976-978 (1998).
    [CrossRef]
  12. M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589-1591 (1996).
    [CrossRef]
  13. R. Wilk, A. Klehr, M. Mikulics, T. Hasek, M. Walther, and M. Koch, “Terahertz generation with a 1064 nm DFB laser diode,” Electron. Lett. 43, 108-110 (2007).
    [CrossRef]
  14. I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
    [CrossRef]
  15. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
    [CrossRef]
  16. M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Pérot etalon,” J. Appl. Phys. 97, 103108 (2005).
    [CrossRef]
  17. F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547-556 (2006).
    [CrossRef]

2007 (2)

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614-618 (2007).
[CrossRef]

R. Wilk, A. Klehr, M. Mikulics, T. Hasek, M. Walther, and M. Koch, “Terahertz generation with a 1064 nm DFB laser diode,” Electron. Lett. 43, 108-110 (2007).
[CrossRef]

2006 (1)

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547-556 (2006).
[CrossRef]

2005 (3)

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Pérot etalon,” J. Appl. Phys. 97, 103108 (2005).
[CrossRef]

I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

2003 (3)

2002 (2)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807-3814(2002).
[CrossRef] [PubMed]

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

1999 (1)

A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524-2526 (1999).
[CrossRef]

1998 (2)

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode,” Jpn. J. Appl. Phys. 37, 976-978 (1998).
[CrossRef]

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824-3826 (1998).
[CrossRef]

1997 (1)

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

1996 (1)

M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589-1591 (1996).
[CrossRef]

1995 (1)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

Baker, C.

I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

Bauer, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

Brown, C. M.

M. R. Kutteruf, C. M. Brown, L. K. Iwaki, M. B. Campbell, T. M. Korter, and E. J. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett. 375, 337-343(2003).
[CrossRef]

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

Calawa, S.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824-3826 (1998).
[CrossRef]

Campbell, M. B.

M. R. Kutteruf, C. M. Brown, L. K. Iwaki, M. B. Campbell, T. M. Korter, and E. J. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett. 375, 337-343(2003).
[CrossRef]

Cole, B. E.

I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

Czasch, S.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

Dinatale, W. F.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824-3826 (1998).
[CrossRef]

Duerr, E. K.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824-3826 (1998).
[CrossRef]

Evans, M. J.

I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

Ewert, U.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547-556 (2006).
[CrossRef]

Fischer, B. M.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807-3814(2002).
[CrossRef] [PubMed]

Gergory, I. S.

I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

Gu, P.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode,” Jpn. J. Appl. Phys. 37, 976-978 (1998).
[CrossRef]

Harada, M.

Hasek, T.

R. Wilk, A. Klehr, M. Mikulics, T. Hasek, M. Walther, and M. Koch, “Terahertz generation with a 1064 nm DFB laser diode,” Electron. Lett. 43, 108-110 (2007).
[CrossRef]

Heilweil, E. J.

M. R. Kutteruf, C. M. Brown, L. K. Iwaki, M. B. Campbell, T. M. Korter, and E. J. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett. 375, 337-343(2003).
[CrossRef]

Heinz, T. F.

A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524-2526 (1999).
[CrossRef]

Hidaka, T.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode,” Jpn. J. Appl. Phys. 37, 976-978 (1998).
[CrossRef]

Hirata, A.

Hwang, J.-S.

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

Hyodo, M.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode,” Jpn. J. Appl. Phys. 37, 976-978 (1998).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589-1591 (1996).
[CrossRef]

Iwaki, L. K.

M. R. Kutteruf, C. M. Brown, L. K. Iwaki, M. B. Campbell, T. M. Korter, and E. J. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett. 375, 337-343(2003).
[CrossRef]

Jansen, C.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614-618 (2007).
[CrossRef]

Jepsen, P. U.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807-3814(2002).
[CrossRef] [PubMed]

Karpowicz, N.

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

Kawase, K.

Khare, S.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547-556 (2006).
[CrossRef]

Klehr, A.

R. Wilk, A. Klehr, M. Mikulics, T. Hasek, M. Walther, and M. Koch, “Terahertz generation with a 1064 nm DFB laser diode,” Electron. Lett. 43, 108-110 (2007).
[CrossRef]

Koch, M.

R. Wilk, A. Klehr, M. Mikulics, T. Hasek, M. Walther, and M. Koch, “Terahertz generation with a 1064 nm DFB laser diode,” Electron. Lett. 43, 108-110 (2007).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614-618 (2007).
[CrossRef]

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547-556 (2006).
[CrossRef]

Korter, T. M.

M. R. Kutteruf, C. M. Brown, L. K. Iwaki, M. B. Campbell, T. M. Korter, and E. J. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett. 375, 337-343(2003).
[CrossRef]

Kutteruf, M. R.

M. R. Kutteruf, C. M. Brown, L. K. Iwaki, M. B. Campbell, T. M. Korter, and E. J. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett. 375, 337-343(2003).
[CrossRef]

Leonhardt, R.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

Lin, K.-I

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

Löffler, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

Malcoci, A.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Pérot etalon,” J. Appl. Phys. 97, 103108 (2005).
[CrossRef]

Matsuura, S.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

Matsuuro, S.

M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589-1591 (1996).
[CrossRef]

Mayorga, I. C.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Pérot etalon,” J. Appl. Phys. 97, 103108 (2005).
[CrossRef]

McIntosh, K. A.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824-3826 (1998).
[CrossRef]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

Mikulics, M.

R. Wilk, A. Klehr, M. Mikulics, T. Hasek, M. Walther, and M. Koch, “Terahertz generation with a 1064 nm DFB laser diode,” Electron. Lett. 43, 108-110 (2007).
[CrossRef]

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Pérot etalon,” J. Appl. Phys. 97, 103108 (2005).
[CrossRef]

Miles, R. E.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Pérot etalon,” J. Appl. Phys. 97, 103108 (2005).
[CrossRef]

Missous, M.

I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

Mittleman, D. M.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614-618 (2007).
[CrossRef]

Molvar, K. A.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824-3826 (1998).
[CrossRef]

Moneke, M.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547-556 (2006).
[CrossRef]

Naftaly, M.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Pérot etalon,” J. Appl. Phys. 97, 103108 (2005).
[CrossRef]

Nagatsuma, T.

Nahata, A.

A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524-2526 (1999).
[CrossRef]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

Ogawa, Y.

Onodera, N.

M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589-1591 (1996).
[CrossRef]

Pepper, M.

I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

Quast, H.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

Richter, H.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547-556 (2006).
[CrossRef]

Roskos, H. G.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

Rutz, F.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614-618 (2007).
[CrossRef]

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547-556 (2006).
[CrossRef]

Sakai, K.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode,” Jpn. J. Appl. Phys. 37, 976-978 (1998).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589-1591 (1996).
[CrossRef]

Siebert, K. J.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

Spencer, L.

I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

Stone, M. R.

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Pérot etalon,” J. Appl. Phys. 97, 103108 (2005).
[CrossRef]

Tani, M.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode,” Jpn. J. Appl. Phys. 37, 976-978 (1998).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589-1591 (1996).
[CrossRef]

Thomson, M.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

Tribe, W. R.

I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

Verghese, S.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824-3826 (1998).
[CrossRef]

Walther, M.

R. Wilk, A. Klehr, M. Mikulics, T. Hasek, M. Walther, and M. Koch, “Terahertz generation with a 1064 nm DFB laser diode,” Electron. Lett. 43, 108-110 (2007).
[CrossRef]

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807-3814(2002).
[CrossRef] [PubMed]

Watanabe, Y.

Wietzke, S.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614-618 (2007).
[CrossRef]

Wilk, R.

R. Wilk, A. Klehr, M. Mikulics, T. Hasek, M. Walther, and M. Koch, “Terahertz generation with a 1064 nm DFB laser diode,” Electron. Lett. 43, 108-110 (2007).
[CrossRef]

Xu, J.

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

Yardley, J. T.

A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524-2526 (1999).
[CrossRef]

Zhang, C.

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

Zhang, X.-C.

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

Zhong, H.

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

Appl. Phys. Lett. (7)

N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285-287 (1995).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559-561 (1997).
[CrossRef]

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824-3826 (1998).
[CrossRef]

A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524-2526 (1999).
[CrossRef]

I. S. Gergory, W. R. Tribe, C. BakerB. E. Cole, M. J. Evans, L. Spencer, M. Pepper, and M. Missous, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).
[CrossRef]

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003-3005 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

M. R. Kutteruf, C. M. Brown, L. K. Iwaki, M. B. Campbell, T. M. Korter, and E. J. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett. 375, 337-343(2003).
[CrossRef]

Electron. Lett. (2)

M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589-1591 (1996).
[CrossRef]

R. Wilk, A. Klehr, M. Mikulics, T. Hasek, M. Walther, and M. Koch, “Terahertz generation with a 1064 nm DFB laser diode,” Electron. Lett. 43, 108-110 (2007).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27, 547-556 (2006).
[CrossRef]

J. Appl. Phys. (1)

M. R. Stone, M. Naftaly, R. E. Miles, I. C. Mayorga, A. Malcoci, and M. Mikulics, “Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Pérot etalon,” J. Appl. Phys. 97, 103108 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode,” Jpn. J. Appl. Phys. 37, 976-978 (1998).
[CrossRef]

Opt. Express (1)

Phys. Med. Biol. (1)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807-3814(2002).
[CrossRef] [PubMed]

Polym. Test. (1)

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614-618 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup and (b) examples of measured THz signal at 0.3 THz , 0.53 THz , and 0.87 THz . Amplitude at 0.87 THz is multiplied by a factor of 5 and followed by sine-wave fit for clarity.

Fig. 2
Fig. 2

(a) THz amplitude image of wedge-shaped PE and (b) its 3D representation.

Fig. 3
Fig. 3

(a) Cross-section signals and (b) calculated thickness along the sample.

Fig. 4
Fig. 4

(a) THz image of an airbag cover and (b) corresponding photograph.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I det P opt E THz cos ( ω THz c Δ d ) ,
Δ φ = φ s φ 0 = ω THz c d s ( n s 1 ) ,
d s = Δ φ c ω THz ( n s 1 ) .
φ = arccos I det I max

Metrics