Abstract

To our knowledge we present the first experiments with a fully reflective external-cavity quantum- cascade laser system at mid-infrared wavelengths for use as a local oscillator in a heterodyne receiver. The performance of the presented setup was investigated using absorption spectroscopy as well as heterodyne techniques. Tunability over 30cm1 at 1130cm1 was demonstrated using a grating spectrometer. A continuous tuning range of 0.28cm1 was verified by observing the spectra of an internally coupled confocal Fabry–Pérot interferometer and the absorption lines of gas phase SO2. In a second step the output from the system was used as a local oscillator signal for a heterodyne setup. We show that spectral stability and side mode suppression are excellent and that a compact external-cavity quantum-cascade laser system is well suited to be used as a local oscillator in infrared heterodyne spectrometers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Sonnabend, D. Wirtz, F. Schmülling, and R. Schieder, “Tunable heterodyne infrared spectrometer for atmospheric and astronomical studies,” Appl. Opt. 41, 2978-2984 (2002).
    [CrossRef] [PubMed]
  2. G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tunable heterodyne receiver,” Astron. Astrophys. 435, 1181-1184 (2005).
    [CrossRef]
  3. M. Olbrich, V. Mittenzwei, O. Siebertz, F. Schmülling, and R. Schieder, “A 3 GHz instantaneous bandwidth acousto-optical spectrometer with 1 MHz resolution,” in Proceedings of the 18th International Symposium on Space Terahertz Technology, Pasadena, California, USA (2007), pp. 231-235.
  4. M. Wingender, E. A. Michael, B. Vowinkel, and R. Schieder, “Diode laser spectrum investigations for terahertz local oscillator applications,” Opt. Commun. 217, 369-374 (2003).
    [CrossRef]
  5. G. Sonnabend, M. Sornig, P. Krötz, D. Stupar, and R. Schieder, “Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 109, 1016-1029 (2008), doi:10.1016/j.jqsrt.2007.12.003.
    [CrossRef]
  6. F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, and G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator,” Appl. Opt. 37, 5771-5776 (1998).
    [CrossRef]
  7. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556 (1994).
    [CrossRef] [PubMed]
  8. G. Sonnabend and R. Schieder, “Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy,” Appl. Opt. 44, 7170-7172 (2005).
    [CrossRef] [PubMed]
  9. C. Peng, G. Luo, and H. Q. Le, “Broadband, continuous, and fine-tune properties of external-cavity thermoelectric-stabilized mid-infrared quantum-cascade lasers,” Appl. Opt. 42, 4877-4882 (2003).
    [CrossRef] [PubMed]
  10. R. M. Williams, J. F. Kelly, J. S. Hartman, S. W. Sharpe, M. S. Taubman, J. L. Hall, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers,” Opt. Lett. 24, 1844-1846 (1999).
    [CrossRef]
  11. G. Wysocki, R. F. Curl, F. K. Kittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
    [CrossRef]
  12. R. Maulini, A. Mohan, M. Giovannini, and J. Faist, “External cavity quantum-cascade-laser tuneable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
    [CrossRef]
  13. M. Reich, R. Schieder, H. J. Clar, and G. Winnewisser, “Internally coupled Fabry-Pérot interferometer for high precision wavelength control of tunable diode lasers,” Appl. Opt. 25, 130-135 (1986).
    [CrossRef] [PubMed]
  14. R. Schieder, I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937 Cologne, Germany, is preparing a manuscript to be called “Noise at direct- and heterodyne-detection at infrared wavelengths.”

2008 (1)

G. Sonnabend, M. Sornig, P. Krötz, D. Stupar, and R. Schieder, “Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 109, 1016-1029 (2008), doi:10.1016/j.jqsrt.2007.12.003.
[CrossRef]

2006 (1)

R. Maulini, A. Mohan, M. Giovannini, and J. Faist, “External cavity quantum-cascade-laser tuneable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

2005 (3)

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tunable heterodyne receiver,” Astron. Astrophys. 435, 1181-1184 (2005).
[CrossRef]

G. Sonnabend and R. Schieder, “Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy,” Appl. Opt. 44, 7170-7172 (2005).
[CrossRef] [PubMed]

G. Wysocki, R. F. Curl, F. K. Kittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

2003 (2)

C. Peng, G. Luo, and H. Q. Le, “Broadband, continuous, and fine-tune properties of external-cavity thermoelectric-stabilized mid-infrared quantum-cascade lasers,” Appl. Opt. 42, 4877-4882 (2003).
[CrossRef] [PubMed]

M. Wingender, E. A. Michael, B. Vowinkel, and R. Schieder, “Diode laser spectrum investigations for terahertz local oscillator applications,” Opt. Commun. 217, 369-374 (2003).
[CrossRef]

2002 (1)

1999 (1)

1998 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556 (1994).
[CrossRef] [PubMed]

1986 (1)

Baillargeon, J. N.

Bulliard, J. M.

G. Wysocki, R. F. Curl, F. K. Kittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Capasso, F.

Cho, A. Y.

Clar, H. J.

Curl, R. F.

G. Wysocki, R. F. Curl, F. K. Kittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Faist, J.

R. Maulini, A. Mohan, M. Giovannini, and J. Faist, “External cavity quantum-cascade-laser tuneable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Kittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Giovannini, M.

R. Maulini, A. Mohan, M. Giovannini, and J. Faist, “External cavity quantum-cascade-laser tuneable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Gmachl, C.

Hall, J. L.

Harter, M.

Hartman, J. S.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Kelly, J. F.

Kittel, F. K.

G. Wysocki, R. F. Curl, F. K. Kittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Klumb, B.

Krötz, P.

G. Sonnabend, M. Sornig, P. Krötz, D. Stupar, and R. Schieder, “Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 109, 1016-1029 (2008), doi:10.1016/j.jqsrt.2007.12.003.
[CrossRef]

Le, H. Q.

Luo, G.

Maulini, R.

R. Maulini, A. Mohan, M. Giovannini, and J. Faist, “External cavity quantum-cascade-laser tuneable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Kittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Michael, E. A.

M. Wingender, E. A. Michael, B. Vowinkel, and R. Schieder, “Diode laser spectrum investigations for terahertz local oscillator applications,” Opt. Commun. 217, 369-374 (2003).
[CrossRef]

Mittenzwei, V.

M. Olbrich, V. Mittenzwei, O. Siebertz, F. Schmülling, and R. Schieder, “A 3 GHz instantaneous bandwidth acousto-optical spectrometer with 1 MHz resolution,” in Proceedings of the 18th International Symposium on Space Terahertz Technology, Pasadena, California, USA (2007), pp. 231-235.

Mohan, A.

R. Maulini, A. Mohan, M. Giovannini, and J. Faist, “External cavity quantum-cascade-laser tuneable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Olbrich, M.

M. Olbrich, V. Mittenzwei, O. Siebertz, F. Schmülling, and R. Schieder, “A 3 GHz instantaneous bandwidth acousto-optical spectrometer with 1 MHz resolution,” in Proceedings of the 18th International Symposium on Space Terahertz Technology, Pasadena, California, USA (2007), pp. 231-235.

Peng, C.

Reich, M.

Schieder, R.

G. Sonnabend, M. Sornig, P. Krötz, D. Stupar, and R. Schieder, “Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 109, 1016-1029 (2008), doi:10.1016/j.jqsrt.2007.12.003.
[CrossRef]

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tunable heterodyne receiver,” Astron. Astrophys. 435, 1181-1184 (2005).
[CrossRef]

G. Sonnabend and R. Schieder, “Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy,” Appl. Opt. 44, 7170-7172 (2005).
[CrossRef] [PubMed]

M. Wingender, E. A. Michael, B. Vowinkel, and R. Schieder, “Diode laser spectrum investigations for terahertz local oscillator applications,” Opt. Commun. 217, 369-374 (2003).
[CrossRef]

G. Sonnabend, D. Wirtz, F. Schmülling, and R. Schieder, “Tunable heterodyne infrared spectrometer for atmospheric and astronomical studies,” Appl. Opt. 41, 2978-2984 (2002).
[CrossRef] [PubMed]

F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, and G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator,” Appl. Opt. 37, 5771-5776 (1998).
[CrossRef]

M. Reich, R. Schieder, H. J. Clar, and G. Winnewisser, “Internally coupled Fabry-Pérot interferometer for high precision wavelength control of tunable diode lasers,” Appl. Opt. 25, 130-135 (1986).
[CrossRef] [PubMed]

R. Schieder, I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937 Cologne, Germany, is preparing a manuscript to be called “Noise at direct- and heterodyne-detection at infrared wavelengths.”

M. Olbrich, V. Mittenzwei, O. Siebertz, F. Schmülling, and R. Schieder, “A 3 GHz instantaneous bandwidth acousto-optical spectrometer with 1 MHz resolution,” in Proceedings of the 18th International Symposium on Space Terahertz Technology, Pasadena, California, USA (2007), pp. 231-235.

Schmülling, F.

G. Sonnabend, D. Wirtz, F. Schmülling, and R. Schieder, “Tunable heterodyne infrared spectrometer for atmospheric and astronomical studies,” Appl. Opt. 41, 2978-2984 (2002).
[CrossRef] [PubMed]

F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, and G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator,” Appl. Opt. 37, 5771-5776 (1998).
[CrossRef]

M. Olbrich, V. Mittenzwei, O. Siebertz, F. Schmülling, and R. Schieder, “A 3 GHz instantaneous bandwidth acousto-optical spectrometer with 1 MHz resolution,” in Proceedings of the 18th International Symposium on Space Terahertz Technology, Pasadena, California, USA (2007), pp. 231-235.

Sharpe, S. W.

Siebertz, O.

M. Olbrich, V. Mittenzwei, O. Siebertz, F. Schmülling, and R. Schieder, “A 3 GHz instantaneous bandwidth acousto-optical spectrometer with 1 MHz resolution,” in Proceedings of the 18th International Symposium on Space Terahertz Technology, Pasadena, California, USA (2007), pp. 231-235.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

Sonnabend, G.

G. Sonnabend, M. Sornig, P. Krötz, D. Stupar, and R. Schieder, “Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 109, 1016-1029 (2008), doi:10.1016/j.jqsrt.2007.12.003.
[CrossRef]

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tunable heterodyne receiver,” Astron. Astrophys. 435, 1181-1184 (2005).
[CrossRef]

G. Sonnabend and R. Schieder, “Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy,” Appl. Opt. 44, 7170-7172 (2005).
[CrossRef] [PubMed]

G. Sonnabend, D. Wirtz, F. Schmülling, and R. Schieder, “Tunable heterodyne infrared spectrometer for atmospheric and astronomical studies,” Appl. Opt. 41, 2978-2984 (2002).
[CrossRef] [PubMed]

Sornig, M.

G. Sonnabend, M. Sornig, P. Krötz, D. Stupar, and R. Schieder, “Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 109, 1016-1029 (2008), doi:10.1016/j.jqsrt.2007.12.003.
[CrossRef]

Stupar, D.

G. Sonnabend, M. Sornig, P. Krötz, D. Stupar, and R. Schieder, “Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 109, 1016-1029 (2008), doi:10.1016/j.jqsrt.2007.12.003.
[CrossRef]

Taubman, M. S.

Vetterle, V.

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tunable heterodyne receiver,” Astron. Astrophys. 435, 1181-1184 (2005).
[CrossRef]

Vowinkel, B.

M. Wingender, E. A. Michael, B. Vowinkel, and R. Schieder, “Diode laser spectrum investigations for terahertz local oscillator applications,” Opt. Commun. 217, 369-374 (2003).
[CrossRef]

F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, and G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator,” Appl. Opt. 37, 5771-5776 (1998).
[CrossRef]

Williams, R. M.

Wingender, M.

M. Wingender, E. A. Michael, B. Vowinkel, and R. Schieder, “Diode laser spectrum investigations for terahertz local oscillator applications,” Opt. Commun. 217, 369-374 (2003).
[CrossRef]

Winnewisser, G.

Wirtz, D.

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tunable heterodyne receiver,” Astron. Astrophys. 435, 1181-1184 (2005).
[CrossRef]

G. Sonnabend, D. Wirtz, F. Schmülling, and R. Schieder, “Tunable heterodyne infrared spectrometer for atmospheric and astronomical studies,” Appl. Opt. 41, 2978-2984 (2002).
[CrossRef] [PubMed]

Wysocki, G.

G. Wysocki, R. F. Curl, F. K. Kittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

G. Wysocki, R. F. Curl, F. K. Kittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

R. Maulini, A. Mohan, M. Giovannini, and J. Faist, “External cavity quantum-cascade-laser tuneable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Astron. Astrophys. (1)

G. Sonnabend, D. Wirtz, V. Vetterle, and R. Schieder, “High resolution observations of Martian non-thermal CO2 emission near 10 μm with a new tunable heterodyne receiver,” Astron. Astrophys. 435, 1181-1184 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

G. Sonnabend, M. Sornig, P. Krötz, D. Stupar, and R. Schieder, “Ultra high spectral resolution observations of planetary atmospheres using the Cologne tuneable heterodyne infrared spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 109, 1016-1029 (2008), doi:10.1016/j.jqsrt.2007.12.003.
[CrossRef]

Opt. Commun. (1)

M. Wingender, E. A. Michael, B. Vowinkel, and R. Schieder, “Diode laser spectrum investigations for terahertz local oscillator applications,” Opt. Commun. 217, 369-374 (2003).
[CrossRef]

Opt. Lett. (1)

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Other (2)

M. Olbrich, V. Mittenzwei, O. Siebertz, F. Schmülling, and R. Schieder, “A 3 GHz instantaneous bandwidth acousto-optical spectrometer with 1 MHz resolution,” in Proceedings of the 18th International Symposium on Space Terahertz Technology, Pasadena, California, USA (2007), pp. 231-235.

R. Schieder, I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937 Cologne, Germany, is preparing a manuscript to be called “Noise at direct- and heterodyne-detection at infrared wavelengths.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup. The FP QCL with the EC in a Littrow configuration with all required components: grating (GR), fixed mirror on the rotary stage (M), OAP to collimate the laser beam, laser control device (LC), frequency generator (FG), and an adjustable voltage divider (VD) is framed (dashed line). Using beam splitters the output beam from the EC QCL is sent to a grating monochromator (GM), a gas cell (GC), an ICFPI, and a THIS for analysis.

Fig. 2
Fig. 2

Schematic demonstrating the condition needed for single-mode emission with an EC. (a) EC modes. (b) FP QCL internal modes. (c) Gain profile of the grating. The FP QCL will emit only on one mode for which the losses are minimal.

Fig. 3
Fig. 3

Coupling efficiency of QCL and EC plotted versus the distance of the QCL from the focus of the OAP. For optimal mode matching the QCL has to be placed very close to the focus.

Fig. 4
Fig. 4

Image of the beam profile recorded with an IR camera. The intensity is scaled linearly from black to white (higher values are white). The laser beam profile on the left-hand side shows aberration, whereas the beam profile on the right-hand side does not show such aberration after readjusting the position of the OAP.

Fig. 5
Fig. 5

(a) Emission spectra of the FP QCL without the EC (black line) and coupled with the EC (gray dotted line). Each single-mode of the EC QCL system can be excited while the other modes are suppressed. (b) The ordinate shows the corresponding grating angle given in degrees for every single-mode emission of the EC QCL.

Fig. 6
Fig. 6

(a) ICFPI fringes ( FSR ICFPI = 300 MHz ) recorded with the EC QCL (b) while taking the SO 2 absorption spectrum in the second derivation near 1151.2 cm 1 . The spectral resolution is 10 MHz . (c) The corresponding frequency range calculated with HITRAN.

Fig. 7
Fig. 7

Heterodyne double sideband SO 2 spectrum near 1136 cm 1 . The abscissas show the difference frequency, or IF, of the LO and blackbody signal. The ordinate presents the detected intensity. The inlay shows a cutout between 2.2 and 3 GHZ of the measured spectra where the parasitic modes are expected. At 2.462 GHz one can see a wireless LAN signal. The spectral resolution is 1 MHz .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FSR = 1 2 n l QCL ,
P sys = 2 · k B · J sys · δ Res ,

Metrics