Abstract

It is shown that manufacturing tolerances of the fiber parameters bend radius and numerical aperture (NA) significantly influence the fiber bend loss performance and spectral response of a fiber based edge filter. A theoretical model, validated by experimental results, is used to determine the changes in key spectral parameters for an edge filter, resulting from changes within their manufacturing tolerance range, for both the bend radius and NA. Finally, it is shown that bend-radius tuning during fabrication of such filters is a means of mitigating the effect of manufacturing variations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Wlodarczyk, “Wavelength referencing in single-mode microbend sensors,” Opt. Lett. 12, 741-743 (1987).
    [CrossRef] [PubMed]
  2. S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
    [CrossRef]
  3. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12, 1775-1779 (2004).
    [CrossRef] [PubMed]
  4. Q. Wang, G. Farrell, and T. Freir, “Study of transmission response of edge filters employed in wavelength measurements,” Appl. Opt. 44, 7789-7792 (2005).
    [CrossRef] [PubMed]
  5. Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of ratiometric wavelength measurement system,” Appl. Opt. 46, 6362-6367 (2007).
    [CrossRef] [PubMed]
  6. Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31, 1785-1787 (2006).
    [CrossRef] [PubMed]
  7. P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).
    [CrossRef]
  8. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216-220 (1976).
    [CrossRef]
  9. H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
    [CrossRef]
  10. L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
    [CrossRef]
  11. P. Wang, Q. Wang, G. Farrell, G. Rajan, T. Freir, and J. Cassidy, “Investigation of macrobending losses of standard single mode fiber with small bend radii,” Microw. Opt. Techn. Let. 49, 2133-2138 (2007).
    [CrossRef]
  12. P. H. Krawarik and L. S. Watkins, “Fiber geometry specifications and its relation to measured fiber statistics,” Appl. Opt. 17, 3984-3989 (1978).
    [CrossRef] [PubMed]

2007

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).
[CrossRef]

P. Wang, Q. Wang, G. Farrell, G. Rajan, T. Freir, and J. Cassidy, “Investigation of macrobending losses of standard single mode fiber with small bend radii,” Microw. Opt. Techn. Let. 49, 2133-2138 (2007).
[CrossRef]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of ratiometric wavelength measurement system,” Appl. Opt. 46, 6362-6367 (2007).
[CrossRef] [PubMed]

2006

2005

Q. Wang, G. Farrell, and T. Freir, “Study of transmission response of edge filters employed in wavelength measurements,” Appl. Opt. 44, 7789-7792 (2005).
[CrossRef] [PubMed]

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

2004

1997

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

1992

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
[CrossRef]

1987

1978

1976

Albertsen, M.

Bjarklev, A.

Bonacinni, D.

Cassidy, J.

P. Wang, Q. Wang, G. Farrell, G. Rajan, T. Freir, and J. Cassidy, “Investigation of macrobending losses of standard single mode fiber with small bend radii,” Microw. Opt. Techn. Let. 49, 2133-2138 (2007).
[CrossRef]

Farrell, G.

Faustini, L.

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

Folkenberg, J. R.

Freir, T.

Krawarik, P. H.

Marcuse, D.

Martini, G.

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

Mortensen, N. A.

Nam, S. H.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

Nielsen, M. D.

Rajan, G.

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).
[CrossRef]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of ratiometric wavelength measurement system,” Appl. Opt. 46, 6362-6367 (2007).
[CrossRef] [PubMed]

P. Wang, Q. Wang, G. Farrell, G. Rajan, T. Freir, and J. Cassidy, “Investigation of macrobending losses of standard single mode fiber with small bend radii,” Microw. Opt. Techn. Let. 49, 2133-2138 (2007).
[CrossRef]

Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31, 1785-1787 (2006).
[CrossRef] [PubMed]

Renner, H.

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
[CrossRef]

Wang, P.

P. Wang, Q. Wang, G. Farrell, G. Rajan, T. Freir, and J. Cassidy, “Investigation of macrobending losses of standard single mode fiber with small bend radii,” Microw. Opt. Techn. Let. 49, 2133-2138 (2007).
[CrossRef]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of ratiometric wavelength measurement system,” Appl. Opt. 46, 6362-6367 (2007).
[CrossRef] [PubMed]

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).
[CrossRef]

Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31, 1785-1787 (2006).
[CrossRef] [PubMed]

Wang, Q.

Watkins, L. S.

Wlodarczyk, M. T.

Yin, S.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).
[CrossRef]

J. Lightwave Technol.

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
[CrossRef]

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

J. Opt. Soc. Am.

Microw. Opt. Techn. Let.

P. Wang, Q. Wang, G. Farrell, G. Rajan, T. Freir, and J. Cassidy, “Investigation of macrobending losses of standard single mode fiber with small bend radii,” Microw. Opt. Techn. Let. 49, 2133-2138 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic configuration of the ratiometric wavelength measurement system with the fiber edge filter. (b) Desired spectral response of the fiber edge filter.

Fig. 2
Fig. 2

Calculated and measured baseline transmission loss and discrimination range as a function of bend radius for 1060XP fiber with an absorbing layer, and the fiber length is 1 turn.

Fig. 3
Fig. 3

Calculated baseline transmission loss and discrimination range as a function of variable fiber core radius for 1060XP fiber with an absorbing layer; the fiber bend radius is 10.5 mm , and length is 1 turn.

Fig. 4
Fig. 4

Calculated baseline transmission loss and discrimination range as a function of fiber core NA for 1060XP fiber with an absorbing layer; the fiber bend radius is 10.5 mm , and length is 1 turn.

Fig. 5
Fig. 5

Calculated results for the changes in the fiber core and NA as a function of the required fiber bending radius. A axis: Range of possible fiber core radius values based on manufacturing tolerance ( μm ). B axis: Range of possible NA values based on manufacturing tolerance.

Tables (3)

Tables Icon

Table 1 Parameters of the 1060XP Single Mode Fiber a

Tables Icon

Table 2 Fiber Bend Radius Range Needed to Compensate for Two-Standard-Deviation Variations in the Fiber Core Radius

Tables Icon

Table 3 Fiber Bend Radius Range Needed to Compensate for Two-Standard Deviation Variations in the Fiber Numerical Aperture

Metrics