Abstract

A novel polarization converter using reflective metallic gratings and a polarization beam splitter is introduced for LCD backlight illumination. These two optical elements form a polarization rotation resonator. Broadband and high optical efficiency of polarization conversion in the visible region is achieved through the resonance of the refracted light and the surface plasmon wave in metallic surface-relief gratings. For wide-angle illumination, the conversion efficiency with arbitrary incident angle is studied. This device can convert unpolarized light to linear polarization with over 85% efficiency.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
    [CrossRef]
  2. D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, 2006).
    [CrossRef]
  3. J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, “Polarizing beam-splitting optical component,” U.S. Patent 5,962,114 (5 October, 1999).
  4. G. P. Bryan-Brown and J. R. Sambles, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227-1232 (1990).
    [CrossRef]
  5. N. Passilly, K. Ventola, P. Karvinen, P. Laakkonen, J. Turunen, and J. Tervo, “Polarization conversion in conical diffraction by metallic and dielectric subwavelength gratings,” Appl. Opt. 46, 4258-4265 (2007).
    [CrossRef] [PubMed]
  6. S. J. Elston, G. P. Bryan-Brown, T. W. Preist and J. R. Sambles, “Surface-resonance polarization conversion mediated by broken surface symmetry,” Phys. Rev. B 44, 3483-3485 (1991).
    [CrossRef]
  7. Y. L. Kok and N. C. Gallagher, “Relative phases of electromagnetic waves diffracted by a perfectly conducting rectangular-grooved grating,” J. Opt. Soc. Am. A 5, 65-73 (1988).
    [CrossRef] [PubMed]
  8. C. W. Haggans, L. Li, and T. Fujita, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675-686 (1993).
    [CrossRef]
  9. S. R. Seshadri, “Polarization conversion by reflection in a thin-film grating,” J. Opt. Soc. Am. A 18, 1765-1776 (2001).
    [CrossRef]
  10. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount,” J. Opt. Soc. Am. A 20, 836-843 (2003).
    [CrossRef]
  11. I. R. Hooper and J. R. Sambles, “Broadband polarization-converting mirror for the visible region of the spectrum,” Opt. Lett. 27, 2152-2154 (2002).
    [CrossRef]
  12. C. C. Tsai and S. T. Wu, “Study of broadband polarization conversion with metallic surface-relief gratings by rigorous coupled-wave analysis,” J. Opt. Soc. Am. A (to be published).
  13. A. V. Kats and I. S. Spevak, “Analytical theory of resonance diffraction and transformation of light polarization,” Phys. Rev. B 65, 195406 (2002).
    [CrossRef]
  14. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on a narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002).
    [CrossRef]
  15. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings--a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. A 72, 839-846 (1982).
    [CrossRef]
  16. Y. Okuno, “The mode-matching method,” in Analysis Methods for Electromagnetic Wave Problems, E. Yamashita, ed. (Artech House, 1990), pp. 107-138.
  17. T. Suyama, Y. Okuno, and T. Matsuda, “Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement,” Prog. Electromagn. Res. PIER 72, 91-103 (2007).
    [CrossRef]
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076(1995).
    [CrossRef]
  19. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  20. P. C. Logofatu, S. A. Coulombe, B. K. Minhas, and J. R. McNeil, “Identity of the cross-reflection coefficients for symmetric surface-relief gratings,” J. Opt. Soc. Am. A 16, 1108-1114 (1999).
    [CrossRef]
  21. D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49-55 (2003).
    [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants (Academic, 1997).

2007 (2)

T. Suyama, Y. Okuno, and T. Matsuda, “Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement,” Prog. Electromagn. Res. PIER 72, 91-103 (2007).
[CrossRef]

N. Passilly, K. Ventola, P. Karvinen, P. Laakkonen, J. Turunen, and J. Tervo, “Polarization conversion in conical diffraction by metallic and dielectric subwavelength gratings,” Appl. Opt. 46, 4258-4265 (2007).
[CrossRef] [PubMed]

2003 (2)

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount,” J. Opt. Soc. Am. A 20, 836-843 (2003).
[CrossRef]

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49-55 (2003).
[CrossRef]

2002 (3)

A. V. Kats and I. S. Spevak, “Analytical theory of resonance diffraction and transformation of light polarization,” Phys. Rev. B 65, 195406 (2002).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on a narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Broadband polarization-converting mirror for the visible region of the spectrum,” Opt. Lett. 27, 2152-2154 (2002).
[CrossRef]

2001 (1)

1999 (1)

1995 (2)

1993 (1)

C. W. Haggans, L. Li, and T. Fujita, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

1991 (1)

S. J. Elston, G. P. Bryan-Brown, T. W. Preist and J. R. Sambles, “Surface-resonance polarization conversion mediated by broken surface symmetry,” Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

1990 (1)

G. P. Bryan-Brown and J. R. Sambles, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227-1232 (1990).
[CrossRef]

1988 (1)

1982 (1)

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings--a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. A 72, 839-846 (1982).
[CrossRef]

Armitage, D.

D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, 2006).
[CrossRef]

Bryan-Brown, G. P.

S. J. Elston, G. P. Bryan-Brown, T. W. Preist and J. R. Sambles, “Surface-resonance polarization conversion mediated by broken surface symmetry,” Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

G. P. Bryan-Brown and J. R. Sambles, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227-1232 (1990).
[CrossRef]

Chandezon, J.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings--a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. A 72, 839-846 (1982).
[CrossRef]

Cornet, G.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings--a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. A 72, 839-846 (1982).
[CrossRef]

Coulombe, S. A.

Dupuis, M. T.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings--a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. A 72, 839-846 (1982).
[CrossRef]

Elston, S. J.

S. J. Elston, G. P. Bryan-Brown, T. W. Preist and J. R. Sambles, “Surface-resonance polarization conversion mediated by broken surface symmetry,” Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

Fujita, T.

C. W. Haggans, L. Li, and T. Fujita, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

Gallagher, N. C.

Gaylord, T. K.

Grann, E. B.

Haggans, C. W.

C. W. Haggans, L. Li, and T. Fujita, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

Hooper, I. R.

Jin, G.-F

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Jonza, J. M.

J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, “Polarizing beam-splitting optical component,” U.S. Patent 5,962,114 (5 October, 1999).

Karvinen, P.

Kats, A. V.

A. V. Kats and I. S. Spevak, “Analytical theory of resonance diffraction and transformation of light polarization,” Phys. Rev. B 65, 195406 (2002).
[CrossRef]

Kok, Y. L.

Laakkonen, P.

Li, L.

C. W. Haggans, L. Li, and T. Fujita, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

Liu, H.-T.

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Logofatu, P. C.

Lu, S.

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Matsuda, T.

T. Suyama, Y. Okuno, and T. Matsuda, “Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement,” Prog. Electromagn. Res. PIER 72, 91-103 (2007).
[CrossRef]

Maystre, D.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings--a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. A 72, 839-846 (1982).
[CrossRef]

McNeil, J. R.

Minhas, B. K.

Moharam, M. G.

Okuno, Y.

T. Suyama, Y. Okuno, and T. Matsuda, “Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement,” Prog. Electromagn. Res. PIER 72, 91-103 (2007).
[CrossRef]

Y. Okuno, “The mode-matching method,” in Analysis Methods for Electromagnetic Wave Problems, E. Yamashita, ed. (Artech House, 1990), pp. 107-138.

Ouderkirk, A. J.

J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, “Polarizing beam-splitting optical component,” U.S. Patent 5,962,114 (5 October, 1999).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants (Academic, 1997).

Passilly, N.

Pommet, D. A.

Preist, T. W.

S. J. Elston, G. P. Bryan-Brown, T. W. Preist and J. R. Sambles, “Surface-resonance polarization conversion mediated by broken surface symmetry,” Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount,” J. Opt. Soc. Am. A 20, 836-843 (2003).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Broadband polarization-converting mirror for the visible region of the spectrum,” Opt. Lett. 27, 2152-2154 (2002).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on a narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002).
[CrossRef]

S. J. Elston, G. P. Bryan-Brown, T. W. Preist and J. R. Sambles, “Surface-resonance polarization conversion mediated by broken surface symmetry,” Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

G. P. Bryan-Brown and J. R. Sambles, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227-1232 (1990).
[CrossRef]

Seshadri, S. R.

Spevak, I. S.

A. V. Kats and I. S. Spevak, “Analytical theory of resonance diffraction and transformation of light polarization,” Phys. Rev. B 65, 195406 (2002).
[CrossRef]

Stover, C. A.

J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, “Polarizing beam-splitting optical component,” U.S. Patent 5,962,114 (5 October, 1999).

Suyama, T.

T. Suyama, Y. Okuno, and T. Matsuda, “Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement,” Prog. Electromagn. Res. PIER 72, 91-103 (2007).
[CrossRef]

Tervo, J.

Tsai, C. C.

C. C. Tsai and S. T. Wu, “Study of broadband polarization conversion with metallic surface-relief gratings by rigorous coupled-wave analysis,” J. Opt. Soc. Am. A (to be published).

Turunen, J.

Underwood, I.

D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, 2006).
[CrossRef]

Ventola, K.

Weber, M. F.

J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, “Polarizing beam-splitting optical component,” U.S. Patent 5,962,114 (5 October, 1999).

Wu, S. T.

D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, 2006).
[CrossRef]

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
[CrossRef]

C. C. Tsai and S. T. Wu, “Study of broadband polarization conversion with metallic surface-relief gratings by rigorous coupled-wave analysis,” J. Opt. Soc. Am. A (to be published).

Yan, Y.-B.

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Yang, D. K.

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
[CrossRef]

Yi, D.-E.

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Appl. Opt. (1)

J. Mod. Opt. (2)

G. P. Bryan-Brown and J. R. Sambles, “Polarization conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227-1232 (1990).
[CrossRef]

C. W. Haggans, L. Li, and T. Fujita, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675-686 (1993).
[CrossRef]

J. Opt. Soc. Am. A (7)

Opt. Commun. (1)

D.-E. Yi, Y.-B. Yan, H.-T. Liu, S. Lu, and G.-F Jin, “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49-55 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (3)

A. V. Kats and I. S. Spevak, “Analytical theory of resonance diffraction and transformation of light polarization,” Phys. Rev. B 65, 195406 (2002).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on a narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002).
[CrossRef]

S. J. Elston, G. P. Bryan-Brown, T. W. Preist and J. R. Sambles, “Surface-resonance polarization conversion mediated by broken surface symmetry,” Phys. Rev. B 44, 3483-3485 (1991).
[CrossRef]

Prog. Electromagn. Res. PIER (1)

T. Suyama, Y. Okuno, and T. Matsuda, “Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement,” Prog. Electromagn. Res. PIER 72, 91-103 (2007).
[CrossRef]

Other (6)

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
[CrossRef]

D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, 2006).
[CrossRef]

J. M. Jonza, M. F. Weber, A. J. Ouderkirk, and C. A. Stover, “Polarizing beam-splitting optical component,” U.S. Patent 5,962,114 (5 October, 1999).

C. C. Tsai and S. T. Wu, “Study of broadband polarization conversion with metallic surface-relief gratings by rigorous coupled-wave analysis,” J. Opt. Soc. Am. A (to be published).

E. D. Palik, Handbook of Optical Constants (Academic, 1997).

Y. Okuno, “The mode-matching method,” in Analysis Methods for Electromagnetic Wave Problems, E. Yamashita, ed. (Artech House, 1990), pp. 107-138.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Light recycling system for LCD backlight illumination, where the unpolarized light passes one linear polarization through the polarization beam splitter and the other polarization is directed to the polarization converting reflector.

Fig. 2
Fig. 2

Recycling process of linear polarized light through multibouncing between the polarization beam splitter and metallic grating reflector; also shown is the profile of sliver trapezoidal grating.

Fig. 3
Fig. 3

(a) Polarization conversion efficiency C s p ( λ , θ ) without light recycling of the trapezoid grating for ϕ = 45 ° with maximum C s p = 91.3 % , minimum C s p = 36.1 % , and average C ¯ s p = 75.7 % . (b) Top view of (a).

Fig. 4
Fig. 4

Enhanced polarization conversion efficiency C s p ( λ , θ ) with light recycling of the same grating and incident condition as in Fig. 3. (a) Maximum C s p = 93.0 % , minimum C s p = 48.0 % , and average C ¯ s p = 87.2 % . (b) Top view (a).

Fig. 5
Fig. 5

(a)  C ¯ s p ( ϕ ) curve without light recycling of trapezoid grating for ϕ = 30 ° to 60 ° , the maximum C ¯ s p = 76.7 % occurs at ϕ = 48 ° . (b) Enhanced C ¯ s p ( ϕ ) curve with light recycling; the maximum C ¯ s p = 87.2 % occurs at ϕ = 45 ° .

Fig. 6
Fig. 6

(a) Enhanced polarization conversion efficiency C s p ( λ , θ ) with light recycling of the trapezoid grating for ϕ = 48 ° with maximum C s p = 92.8 % , minimum C s p = 47.4 % , and average C ¯ s p = 87.0 % . (b) Top view of (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

TM 0 = 1 TE 1 , TM i = C s p × TE i , TE i + 1 = ( R C s p ) × TE i TM total = TM 0 + TM 1 + + TM = 1 + ( R 1 ) / ( 1 + C s p R ) × TE 1 ,
C ¯ s p = C s p ( λ , θ ) d λ d θ / Δ λ Δ θ ,

Metrics