Abstract

The fabrication, implementation, and evaluation of an in-fiber white-light interferometric distance sensor that is capable of measuring the absolute value of an arbitrary small distance are presented. Taking advantage of the mode-coupling effect of a long-period fiber grating, an additional cavity distance is added to the optical path difference of the distance sensor; therefore, it can generate a sufficient number of fringes for distance demodulation even if the free-space cavity distance is very small. It is experimentally verified that the distance sensor is capable of measuring small distances that are beyond the capability of a Fabry–Perot interferometric distance sensor.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
    [CrossRef]
  2. L. Ferreira, A. B. L. Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photon. Technol. 8, 1519-1521 (1996).
    [CrossRef]
  3. P. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576-1580 (2004).
    [CrossRef]
  4. K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
    [CrossRef]
  5. T. Wilson, “Coherent methods in confocal microscopy,” IEEE Engin. Med. Bio. Mag. 15, 84-91 (1996).
    [CrossRef]
  6. L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fiber optical confocal scanning microscope,” Meas. Sci. Technol. 11, 1786-1791 (2000).
    [CrossRef]
  7. C. Lin and F. Tseng, “A micro Fabry-Perot sensor for nano-lateral displacement sensing with enhanced sensitivity and pressure resistance,” Sens. Actuators, A 114, 163-170(2004).
    [CrossRef]
  8. T. Gangopadhyay, “Non-contact vibration measurement based on extrinsic Fabry-Perot interferometer implemented using arrays of single-mode fibers,” Meas. Sci. Technol. 15, 911-917(2004).
    [CrossRef]
  9. G. Schrofer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68, 344-349 (1998).
    [CrossRef]
  10. B. T. Meggit, “Fiber optic white light interferometric sensors,” in Optical Sensor Technology (Chapman and Hall, 2000), pp. 193-238.
  11. K. A. Murphy, M. E. Gunther, A. Wang, R. O. Claus, and A. M. Vengsarkar, “Extrinsic Fabry-Perot optical fiber sensor,” in Proceeding of the 8th Optical Fiber Sensor Conference (IEEE, 1992), pp. 193-196.
    [CrossRef]
  12. H. Huang, Data Interrogation for Fabry-Perot white-light interferometry,” Proc. SPIE 6174, 617319 (2006).
  13. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-Processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736-1738 (2004).
    [CrossRef] [PubMed]
  14. R. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999).
    [CrossRef]
  15. H. Shiku, J. R. Krogmeier, and R. C. Dunn, “Noncontact near-field scanning optical microscopy imaging using an interferometric optical feedback mechanism,” Langmuir 15, 2162-2168 (1999).
    [CrossRef]

2006

H. Huang, Data Interrogation for Fabry-Perot white-light interferometry,” Proc. SPIE 6174, 617319 (2006).

2005

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

2004

P. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576-1580 (2004).
[CrossRef]

C. Lin and F. Tseng, “A micro Fabry-Perot sensor for nano-lateral displacement sensing with enhanced sensitivity and pressure resistance,” Sens. Actuators, A 114, 163-170(2004).
[CrossRef]

T. Gangopadhyay, “Non-contact vibration measurement based on extrinsic Fabry-Perot interferometer implemented using arrays of single-mode fibers,” Meas. Sci. Technol. 15, 911-917(2004).
[CrossRef]

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-Processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736-1738 (2004).
[CrossRef] [PubMed]

2000

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fiber optical confocal scanning microscope,” Meas. Sci. Technol. 11, 1786-1791 (2000).
[CrossRef]

1999

R. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999).
[CrossRef]

H. Shiku, J. R. Krogmeier, and R. C. Dunn, “Noncontact near-field scanning optical microscopy imaging using an interferometric optical feedback mechanism,” Langmuir 15, 2162-2168 (1999).
[CrossRef]

1998

G. Schrofer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68, 344-349 (1998).
[CrossRef]

1996

T. Wilson, “Coherent methods in confocal microscopy,” IEEE Engin. Med. Bio. Mag. 15, 84-91 (1996).
[CrossRef]

L. Ferreira, A. B. L. Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photon. Technol. 8, 1519-1521 (1996).
[CrossRef]

1995

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

Arya, V.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

Ballandras, S.

G. Schrofer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68, 344-349 (1998).
[CrossRef]

Claus, R. O.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

K. A. Murphy, M. E. Gunther, A. Wang, R. O. Claus, and A. M. Vengsarkar, “Extrinsic Fabry-Perot optical fiber sensor,” in Proceeding of the 8th Optical Fiber Sensor Conference (IEEE, 1992), pp. 193-196.
[CrossRef]

de Labachelerie, M.

G. Schrofer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68, 344-349 (1998).
[CrossRef]

Dunn, R.

R. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999).
[CrossRef]

Dunn, R. C.

H. Shiku, J. R. Krogmeier, and R. C. Dunn, “Noncontact near-field scanning optical microscopy imaging using an interferometric optical feedback mechanism,” Langmuir 15, 2162-2168 (1999).
[CrossRef]

Elflein, W.

G. Schrofer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68, 344-349 (1998).
[CrossRef]

Esashi, M.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Farahi, F.

L. Ferreira, A. B. L. Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photon. Technol. 8, 1519-1521 (1996).
[CrossRef]

Ferreira, L.

L. Ferreira, A. B. L. Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photon. Technol. 8, 1519-1521 (1996).
[CrossRef]

Gangopadhyay, T.

T. Gangopadhyay, “Non-contact vibration measurement based on extrinsic Fabry-Perot interferometer implemented using arrays of single-mode fibers,” Meas. Sci. Technol. 15, 911-917(2004).
[CrossRef]

Gunther, M. E.

K. A. Murphy, M. E. Gunther, A. Wang, R. O. Claus, and A. M. Vengsarkar, “Extrinsic Fabry-Perot optical fiber sensor,” in Proceeding of the 8th Optical Fiber Sensor Conference (IEEE, 1992), pp. 193-196.
[CrossRef]

Haga, Y.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Han, M.

Huang, H.

H. Huang, Data Interrogation for Fabry-Perot white-light interferometry,” Proc. SPIE 6174, 617319 (2006).

Krogmeier, J. R.

H. Shiku, J. R. Krogmeier, and R. C. Dunn, “Noncontact near-field scanning optical microscopy imaging using an interferometric optical feedback mechanism,” Langmuir 15, 2162-2168 (1999).
[CrossRef]

Lin, C.

C. Lin and F. Tseng, “A micro Fabry-Perot sensor for nano-lateral displacement sensing with enhanced sensitivity and pressure resistance,” Sens. Actuators, A 114, 163-170(2004).
[CrossRef]

Meggit, B. T.

B. T. Meggit, “Fiber optic white light interferometric sensors,” in Optical Sensor Technology (Chapman and Hall, 2000), pp. 193-238.

Murphy, K. A.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

K. A. Murphy, M. E. Gunther, A. Wang, R. O. Claus, and A. M. Vengsarkar, “Extrinsic Fabry-Perot optical fiber sensor,” in Proceeding of the 8th Optical Fiber Sensor Conference (IEEE, 1992), pp. 193-196.
[CrossRef]

Pickrell, G. R.

Porte, H.

G. Schrofer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68, 344-349 (1998).
[CrossRef]

Ribeiro, A. B. L.

L. Ferreira, A. B. L. Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photon. Technol. 8, 1519-1521 (1996).
[CrossRef]

Santos, J. L.

L. Ferreira, A. B. L. Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photon. Technol. 8, 1519-1521 (1996).
[CrossRef]

Schrofer, G.

G. Schrofer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68, 344-349 (1998).
[CrossRef]

Shen, F.

Shiku, H.

H. Shiku, J. R. Krogmeier, and R. C. Dunn, “Noncontact near-field scanning optical microscopy imaging using an interferometric optical feedback mechanism,” Langmuir 15, 2162-2168 (1999).
[CrossRef]

Swart, P.

P. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576-1580 (2004).
[CrossRef]

Totsu, K.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Tseng, F.

C. Lin and F. Tseng, “A micro Fabry-Perot sensor for nano-lateral displacement sensing with enhanced sensitivity and pressure resistance,” Sens. Actuators, A 114, 163-170(2004).
[CrossRef]

Vengsarkar, A. M.

K. A. Murphy, M. E. Gunther, A. Wang, R. O. Claus, and A. M. Vengsarkar, “Extrinsic Fabry-Perot optical fiber sensor,” in Proceeding of the 8th Optical Fiber Sensor Conference (IEEE, 1992), pp. 193-196.
[CrossRef]

Wang, A.

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-Processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736-1738 (2004).
[CrossRef] [PubMed]

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

K. A. Murphy, M. E. Gunther, A. Wang, R. O. Claus, and A. M. Vengsarkar, “Extrinsic Fabry-Perot optical fiber sensor,” in Proceeding of the 8th Optical Fiber Sensor Conference (IEEE, 1992), pp. 193-196.
[CrossRef]

Wang, G.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fiber optical confocal scanning microscope,” Meas. Sci. Technol. 11, 1786-1791 (2000).
[CrossRef]

Wang, J.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fiber optical confocal scanning microscope,” Meas. Sci. Technol. 11, 1786-1791 (2000).
[CrossRef]

Wilson, T.

T. Wilson, “Coherent methods in confocal microscopy,” IEEE Engin. Med. Bio. Mag. 15, 84-91 (1996).
[CrossRef]

Xu, Z.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fiber optical confocal scanning microscope,” Meas. Sci. Technol. 11, 1786-1791 (2000).
[CrossRef]

Yang, L.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fiber optical confocal scanning microscope,” Meas. Sci. Technol. 11, 1786-1791 (2000).
[CrossRef]

Zhang, Y.

Chem. Rev.

R. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999).
[CrossRef]

IEEE Engin. Med. Bio. Mag.

T. Wilson, “Coherent methods in confocal microscopy,” IEEE Engin. Med. Bio. Mag. 15, 84-91 (1996).
[CrossRef]

IEEE Photon. Technol.

L. Ferreira, A. B. L. Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photon. Technol. 8, 1519-1521 (1996).
[CrossRef]

J. Lightwave Technol.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

J. Micromech. Microeng.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Langmuir

H. Shiku, J. R. Krogmeier, and R. C. Dunn, “Noncontact near-field scanning optical microscopy imaging using an interferometric optical feedback mechanism,” Langmuir 15, 2162-2168 (1999).
[CrossRef]

Meas. Sci. Technol.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Surface profilometry with a fiber optical confocal scanning microscope,” Meas. Sci. Technol. 11, 1786-1791 (2000).
[CrossRef]

P. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576-1580 (2004).
[CrossRef]

T. Gangopadhyay, “Non-contact vibration measurement based on extrinsic Fabry-Perot interferometer implemented using arrays of single-mode fibers,” Meas. Sci. Technol. 15, 911-917(2004).
[CrossRef]

Opt. Lett.

Proc. SPIE

H. Huang, Data Interrogation for Fabry-Perot white-light interferometry,” Proc. SPIE 6174, 617319 (2006).

Sens. Actuators, A

C. Lin and F. Tseng, “A micro Fabry-Perot sensor for nano-lateral displacement sensing with enhanced sensitivity and pressure resistance,” Sens. Actuators, A 114, 163-170(2004).
[CrossRef]

G. Schrofer, W. Elflein, M. de Labachelerie, H. Porte, and S. Ballandras “Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation,” Sens. Actuators, A 68, 344-349 (1998).
[CrossRef]

Other

B. T. Meggit, “Fiber optic white light interferometric sensors,” in Optical Sensor Technology (Chapman and Hall, 2000), pp. 193-238.

K. A. Murphy, M. E. Gunther, A. Wang, R. O. Claus, and A. M. Vengsarkar, “Extrinsic Fabry-Perot optical fiber sensor,” in Proceeding of the 8th Optical Fiber Sensor Conference (IEEE, 1992), pp. 193-196.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

In-fiber LPFG-based WLI distance sensing system.

Fig. 2
Fig. 2

White-light interference generated by LPFG and cladding-coated sensor probe.

Fig. 3
Fig. 3

Normalized fringe pattern from a WLI distance sensor.

Fig. 4
Fig. 4

Sensor probe fabrication process.

Fig. 5
Fig. 5

Experimental setup to fabrication the sensor probe.

Fig. 6
Fig. 6

Micrographic images of the sensor probe at different fabrication steps.

Fig. 7
Fig. 7

Mechanically induced LPFG.

Fig. 8
Fig. 8

Difference spectra obtained using mechanically induced LPFG.

Fig. 9
Fig. 9

Experimental setup for LPFG-based distance sensor.

Fig. 10
Fig. 10

Sensor reflectance spectrum and its FFT without the presence of a mirror.

Fig. 11
Fig. 11

(a) and (b) Fringe spectrum from three interferences and its FFT, (c) and (d) FPI fringe spectrum obtained using a bandpass filter [ 0.65 e 3 0.8 e 3 ] and its FFT, (e) and (f) LPFG fringe spectrum obtained using a bandpass filter [ 0.8 e 3 1.2 e 3 ] and its FFT, (g) and (h)  LPFG + FPI fringe spectrum obtained using a bandpass filter [ 1.25 e 3 2 e 3 ] and its FFT.

Fig. 12
Fig. 12

Distances estimated from the FPI and the LPFG + FPI interference fringes.

Fig. 13
Fig. 13

(a) Filtered reflectance spectrum at a distant smaller than 83 μm ; (b) FFTs of the reflectance spectra at small distances.

Fig. 14
Fig. 14

Linear relationship between the distances moved by the target and the distances measured by the LPFG-based WLI distance sensor.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

OPD = 2 ( Δ n L + n m d ) ,
R ( λ ) = R 1 + R 2 + 2 R 1 R 2 cos ( 2 π OPD / λ + θ ) ,
R ( λ ) = R 1 + R 2 + 2 R 1 R 2 cos ( 4 π n m d / λ + θ ) .
d = λ 1 λ 2 2 n m ( λ 2 λ 1 ) ,
R ( λ ) = R 1 + R 2 + 2 R 1 R 2 cos [ 4 π ( Δ n L + d ) / λ + θ ] .

Metrics