Abstract

Periodic high-/low-index film stacks composed of Y2O3:Eu were grown by glancing angle deposition on silicon and fused silica substrates. Postdeposition annealing at temperatures from 600 to 1000°C for 1   h in air was performed to activate photoluminescence. Absolute photoluminescence spectra were obtained as a function of observation angle. The angular emission distribution was non-Lambertian, with peak emission at angles of 50° to 60° with respect to substrate normal. Spectroscopic transmittance and ellipsometry measurements were performed to characterize the films. Using this description, we were able to reproduce the angular photoluminescence patterns of the films.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin-films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032-1035 (1995).
    [CrossRef]
  2. K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
    [CrossRef]
  3. K. Robbie and M. J. Brett, “Glancing angle deposition of thin films,” U.S. patent 6,206,065 (27 March, 2001).
  4. K. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U.S. patent 5,866,204 (2 February, 1999).
  5. S.-H. Woo and C. K. Hwangbo, “Optical anisotropy of TiO2 and MgF2 thin films prepared by glancing angle deposition,” J. Korean Phys. Soc. 49, 2136-2142 (2006).
  6. H. H. Wang and Y. P. Zhao, “Nanostructure evolution of YBa2Cu3Ox thin films grown by pulsed-laser glancing-angle deposition,” J. Vac. Sci. Technol. B 24, 1230-1233 (2006).
    [CrossRef]
  7. F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Power-law scaling during shadowing growth of nanocolumns by oblique angle deposition,” J. Vac. Sci. Technol. A 25, 160-166 (2007).
    [CrossRef]
  8. J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.-Mater. El. 18, 367-379 (2007).
    [CrossRef]
  9. D. Vick, J. C. Sit, and M. J. Brett, “Glancing angle deposition of thin films” in Recent Developments in Vacuum Science and Technology, J. Dabrowski, ed. (Research Signpost, 2003), pp. 67-94.
  10. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
    [CrossRef]
  11. A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545-2547(2004).
    [CrossRef] [PubMed]
  12. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573-4579 (2003).
    [CrossRef] [PubMed]
  13. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59-62 (2002).
    [CrossRef]
  14. M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348 (2005).
    [CrossRef] [PubMed]
  15. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212-4219 (2003).
    [CrossRef] [PubMed]
  16. Z.-C. Shen, W.-J. Kong, S.-J. Liu, J. Shen, J.-D. Shao, and Z.-X. Fan, “Refractive index analysis of graded index coatings prepared by glancing angle deposition,” Acta Phys. Sin. 55, 5157-5160 (2006).
  17. M. W. Seto, K. Robbie, D. Vick, M. J. Brett, and L. Kuhn, “Mechanical response of thin films with helical microstructures,” J. Vac. Sci. Technol. B 17, 2172-2177 (1999).
    [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
    [PubMed]
  19. I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Comm. 177, 79-84 (2000).
    [CrossRef]
  20. M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006).
    [CrossRef]
  21. N. Takada, T. Tsutsui, and S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032-2034 (1993).
    [CrossRef]
  22. T. Tsutsui, N. Takada, S. Saito, and E. Ogino, “Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure,” Appl. Phys. Lett. 65, 1868-1870 (1994).
    [CrossRef]
  23. S. Setzu, P. Ferrand, and R. Romestain, “Optical properties of multilayered porous silicon,” Mat. Sci. Eng. B-Solid 69-70, 34-42 (2000).
    [CrossRef]
  24. E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
    [CrossRef]
  25. A. M. Glass, N. E. J. Hunt, J. M. Poate, E. F. Schubert, and G. J. Zydzik, “ Absorption resonant rare earth-doped micro-cavities,” U.S. patent 5,363,398 (8 November, 1994).
  26. D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K.-i. Ueda, “High-power single-mode solid-state laser with a short, wide unstable cavity,” J. Opt. Soc. Am. B 22, 1605-1619 (2005).
    [CrossRef]
  27. J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318-325 (2006).
    [CrossRef]
  28. P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, J. C. Sit, and M. J. Brett, “Evaporated nanostructured Y2O3:Eu thin films,” J. Nanosci. Nanotech. 5, 229-234 (2005).
    [CrossRef]
  29. P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Optical properties of porous nanostructured Y2O3:Eu thin films,” J. Vac. Sci. Technol. A 23, 856-861(2005).
    [CrossRef]
  30. M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
    [CrossRef]
  31. S. L. Jones, D. Kumar, K.-G. Cho, R. Singh, and P. H. Holloway, “Pulsed laser deposition of Y2O3:Eu thin film phosphors,” Displays 19, 151-167 (1999).
    [CrossRef]
  32. P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Effects of film structure on photoluminescence emission properties of nanostructured Y2O3:Eu thin films,” Proc. SPIE 5510, 78-87 (2004).
    [CrossRef]
  33. S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Blue-shifting of circular Bragg phenomenon by annealing of chiral sculptured thin films,” Opt. Express 14, 8001-8012 (2006).
    [CrossRef] [PubMed]
  34. K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
    [CrossRef]
  35. J. J. Steele, J. Gospodyn, J. C. Sit, and M. J. Brett, “Impact of morphology on high-speed humidity sensor performance,” IEEE Sens. J. 6, 24-27 (2006).
    [CrossRef]
  36. R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196-201 (1993).
    [CrossRef]
  37. J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), Part I: Basic theory and typical applications,” Proc. SPIE. CR72, 3-28 (1999).
  38. H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, 1999).
  39. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
    [CrossRef]
  40. S. Nakamura, “Principal phosophor materials and their optical properties,” in Phosophor Handbook, 2nd ed., W. M. Yen, S. Shionoya, and H. Yamamoto, eds. (CRC Press, 2007).
  41. T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor,” Appl. Phys. Lett. 76, 1549-1551 (2000).
    [CrossRef]
  42. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
    [CrossRef]
  43. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (erratum),” Appl. Phys. Lett. 69, 2137-2137 (1996).
    [CrossRef]

2007

F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Power-law scaling during shadowing growth of nanocolumns by oblique angle deposition,” J. Vac. Sci. Technol. A 25, 160-166 (2007).
[CrossRef]

J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.-Mater. El. 18, 367-379 (2007).
[CrossRef]

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

2006

J. J. Steele, J. Gospodyn, J. C. Sit, and M. J. Brett, “Impact of morphology on high-speed humidity sensor performance,” IEEE Sens. J. 6, 24-27 (2006).
[CrossRef]

S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Blue-shifting of circular Bragg phenomenon by annealing of chiral sculptured thin films,” Opt. Express 14, 8001-8012 (2006).
[CrossRef] [PubMed]

Z.-C. Shen, W.-J. Kong, S.-J. Liu, J. Shen, J.-D. Shao, and Z.-X. Fan, “Refractive index analysis of graded index coatings prepared by glancing angle deposition,” Acta Phys. Sin. 55, 5157-5160 (2006).

S.-H. Woo and C. K. Hwangbo, “Optical anisotropy of TiO2 and MgF2 thin films prepared by glancing angle deposition,” J. Korean Phys. Soc. 49, 2136-2142 (2006).

H. H. Wang and Y. P. Zhao, “Nanostructure evolution of YBa2Cu3Ox thin films grown by pulsed-laser glancing-angle deposition,” J. Vac. Sci. Technol. B 24, 1230-1233 (2006).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006).
[CrossRef]

J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318-325 (2006).
[CrossRef]

2005

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, J. C. Sit, and M. J. Brett, “Evaporated nanostructured Y2O3:Eu thin films,” J. Nanosci. Nanotech. 5, 229-234 (2005).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Optical properties of porous nanostructured Y2O3:Eu thin films,” J. Vac. Sci. Technol. A 23, 856-861(2005).
[CrossRef]

M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348 (2005).
[CrossRef] [PubMed]

D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K.-i. Ueda, “High-power single-mode solid-state laser with a short, wide unstable cavity,” J. Opt. Soc. Am. B 22, 1605-1619 (2005).
[CrossRef]

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

2004

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Effects of film structure on photoluminescence emission properties of nanostructured Y2O3:Eu thin films,” Proc. SPIE 5510, 78-87 (2004).
[CrossRef]

A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545-2547(2004).
[CrossRef] [PubMed]

2003

2002

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59-62 (2002).
[CrossRef]

2000

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor,” Appl. Phys. Lett. 76, 1549-1551 (2000).
[CrossRef]

S. Setzu, P. Ferrand, and R. Romestain, “Optical properties of multilayered porous silicon,” Mat. Sci. Eng. B-Solid 69-70, 34-42 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Comm. 177, 79-84 (2000).
[CrossRef]

1999

M. W. Seto, K. Robbie, D. Vick, M. J. Brett, and L. Kuhn, “Mechanical response of thin films with helical microstructures,” J. Vac. Sci. Technol. B 17, 2172-2177 (1999).
[CrossRef]

S. L. Jones, D. Kumar, K.-G. Cho, R. Singh, and P. H. Holloway, “Pulsed laser deposition of Y2O3:Eu thin film phosphors,” Displays 19, 151-167 (1999).
[CrossRef]

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), Part I: Basic theory and typical applications,” Proc. SPIE. CR72, 3-28 (1999).

1998

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
[CrossRef]

1997

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

1996

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (erratum),” Appl. Phys. Lett. 69, 2137-2137 (1996).
[CrossRef]

1995

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin-films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032-1035 (1995).
[CrossRef]

1994

T. Tsutsui, N. Takada, S. Saito, and E. Ogino, “Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure,” Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

1993

N. Takada, T. Tsutsui, and S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032-2034 (1993).
[CrossRef]

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
[CrossRef]

R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196-201 (1993).
[CrossRef]

Amassian, A.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

Beydaghyan, G.

Bisson, J.-F.

Blasse, G.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
[PubMed]

Brett, M. J.

J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.-Mater. El. 18, 367-379 (2007).
[CrossRef]

J. J. Steele, J. Gospodyn, J. C. Sit, and M. J. Brett, “Impact of morphology on high-speed humidity sensor performance,” IEEE Sens. J. 6, 24-27 (2006).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, J. C. Sit, and M. J. Brett, “Evaporated nanostructured Y2O3:Eu thin films,” J. Nanosci. Nanotech. 5, 229-234 (2005).
[CrossRef]

M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348 (2005).
[CrossRef] [PubMed]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Optical properties of porous nanostructured Y2O3:Eu thin films,” J. Vac. Sci. Technol. A 23, 856-861(2005).
[CrossRef]

A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545-2547(2004).
[CrossRef] [PubMed]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Effects of film structure on photoluminescence emission properties of nanostructured Y2O3:Eu thin films,” Proc. SPIE 5510, 78-87 (2004).
[CrossRef]

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573-4579 (2003).
[CrossRef] [PubMed]

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59-62 (2002).
[CrossRef]

M. W. Seto, K. Robbie, D. Vick, M. J. Brett, and L. Kuhn, “Mechanical response of thin films with helical microstructures,” J. Vac. Sci. Technol. B 17, 2172-2177 (1999).
[CrossRef]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
[CrossRef]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin-films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032-1035 (1995).
[CrossRef]

R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196-201 (1993).
[CrossRef]

K. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U.S. patent 5,866,204 (2 February, 1999).

K. Robbie and M. J. Brett, “Glancing angle deposition of thin films,” U.S. patent 6,206,065 (27 March, 2001).

D. Vick, J. C. Sit, and M. J. Brett, “Glancing angle deposition of thin films” in Recent Developments in Vacuum Science and Technology, J. Dabrowski, ed. (Research Signpost, 2003), pp. 67-94.

Brown, T.

Bungay, C. L.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), Part I: Basic theory and typical applications,” Proc. SPIE. CR72, 3-28 (1999).

Cho, K.-G.

S. L. Jones, D. Kumar, K.-G. Cho, R. Singh, and P. H. Holloway, “Pulsed laser deposition of Y2O3:Eu thin film phosphors,” Displays 19, 151-167 (1999).
[CrossRef]

Dew, S. K.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin-films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032-1035 (1995).
[CrossRef]

Fan, Z.-X.

Z.-C. Shen, W.-J. Kong, S.-J. Liu, J. Shen, J.-D. Shao, and Z.-X. Fan, “Refractive index analysis of graded index coatings prepared by glancing angle deposition,” Acta Phys. Sin. 55, 5157-5160 (2006).

Fedosejevs, R.

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Optical properties of porous nanostructured Y2O3:Eu thin films,” J. Vac. Sci. Technol. A 23, 856-861(2005).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, J. C. Sit, and M. J. Brett, “Evaporated nanostructured Y2O3:Eu thin films,” J. Nanosci. Nanotech. 5, 229-234 (2005).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Effects of film structure on photoluminescence emission properties of nanostructured Y2O3:Eu thin films,” Proc. SPIE 5510, 78-87 (2004).
[CrossRef]

Ferrand, P.

S. Setzu, P. Ferrand, and R. Romestain, “Optical properties of multilayered porous silicon,” Mat. Sci. Eng. B-Solid 69-70, 34-42 (2000).
[CrossRef]

Friedrich, L. J.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin-films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032-1035 (1995).
[CrossRef]

Glass, A. M.

A. M. Glass, N. E. J. Hunt, J. M. Poate, E. F. Schubert, and G. J. Zydzik, “ Absorption resonant rare earth-doped micro-cavities,” U.S. patent 5,363,398 (8 November, 1994).

Gospodyn, J.

J. J. Steele, J. Gospodyn, J. C. Sit, and M. J. Brett, “Impact of morphology on high-speed humidity sensor performance,” IEEE Sens. J. 6, 24-27 (2006).
[CrossRef]

J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318-325 (2006).
[CrossRef]

Grabmaier, B. C.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
[CrossRef]

Harris, T. D.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
[CrossRef]

Hawkeye, M. M.

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006).
[CrossRef]

A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545-2547(2004).
[CrossRef] [PubMed]

Herzinger, C. M.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), Part I: Basic theory and typical applications,” Proc. SPIE. CR72, 3-28 (1999).

Hilfiker, J.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), Part I: Basic theory and typical applications,” Proc. SPIE. CR72, 3-28 (1999).

Hodgkinson, I. J.

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Comm. 177, 79-84 (2000).
[CrossRef]

Holloway, P. H.

S. L. Jones, D. Kumar, K.-G. Cho, R. Singh, and P. H. Holloway, “Pulsed laser deposition of Y2O3:Eu thin film phosphors,” Displays 19, 151-167 (1999).
[CrossRef]

Horn, M. W.

Hrudey, P. C. P.

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Optical properties of porous nanostructured Y2O3:Eu thin films,” J. Vac. Sci. Technol. A 23, 856-861(2005).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, J. C. Sit, and M. J. Brett, “Evaporated nanostructured Y2O3:Eu thin films,” J. Nanosci. Nanotech. 5, 229-234 (2005).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Effects of film structure on photoluminescence emission properties of nanostructured Y2O3:Eu thin films,” Proc. SPIE 5510, 78-87 (2004).
[CrossRef]

Hunt, N. E. J.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
[CrossRef]

A. M. Glass, N. E. J. Hunt, J. M. Poate, E. F. Schubert, and G. J. Zydzik, “ Absorption resonant rare earth-doped micro-cavities,” U.S. patent 5,363,398 (8 November, 1994).

Hwangbo, C. K.

S.-H. Woo and C. K. Hwangbo, “Optical anisotropy of TiO2 and MgF2 thin films prepared by glancing angle deposition,” J. Korean Phys. Soc. 49, 2136-2142 (2006).

Igarashi, T.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor,” Appl. Phys. Lett. 76, 1549-1551 (2000).
[CrossRef]

Ihara, M.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor,” Appl. Phys. Lett. 76, 1549-1551 (2000).
[CrossRef]

Isobe, T.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor,” Appl. Phys. Lett. 76, 1549-1551 (2000).
[CrossRef]

Jacobson, D. C.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
[CrossRef]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (erratum),” Appl. Phys. Lett. 69, 2137-2137 (1996).
[CrossRef]

Jensen, M. O.

John, S.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59-62 (2002).
[CrossRef]

Johs, B.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), Part I: Basic theory and typical applications,” Proc. SPIE. CR72, 3-28 (1999).

Jones, S. L.

S. L. Jones, D. Kumar, K.-G. Cho, R. Singh, and P. H. Holloway, “Pulsed laser deposition of Y2O3:Eu thin film phosphors,” Displays 19, 151-167 (1999).
[CrossRef]

Kaminska, K.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212-4219 (2003).
[CrossRef] [PubMed]

Karabacak, T.

F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Power-law scaling during shadowing growth of nanocolumns by oblique angle deposition,” J. Vac. Sci. Technol. A 25, 160-166 (2007).
[CrossRef]

Kennedy, S. R.

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573-4579 (2003).
[CrossRef] [PubMed]

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59-62 (2002).
[CrossRef]

Kim, J. K.

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Kong, W.-J.

Z.-C. Shen, W.-J. Kong, S.-J. Liu, J. Shen, J.-D. Shao, and Z.-X. Fan, “Refractive index analysis of graded index coatings prepared by glancing angle deposition,” Acta Phys. Sin. 55, 5157-5160 (2006).

Kouznetsov, D.

Kuhn, L.

M. W. Seto, K. Robbie, D. Vick, M. J. Brett, and L. Kuhn, “Mechanical response of thin films with helical microstructures,” J. Vac. Sci. Technol. B 17, 2172-2177 (1999).
[CrossRef]

Kumar, D.

S. L. Jones, D. Kumar, K.-G. Cho, R. Singh, and P. H. Holloway, “Pulsed laser deposition of Y2O3:Eu thin film phosphors,” Displays 19, 151-167 (1999).
[CrossRef]

Kusunoki, T.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor,” Appl. Phys. Lett. 76, 1549-1551 (2000).
[CrossRef]

Lakhtakia, A.

S. M. Pursel, M. W. Horn, and A. Lakhtakia, “Blue-shifting of circular Bragg phenomenon by annealing of chiral sculptured thin films,” Opt. Express 14, 8001-8012 (2006).
[CrossRef] [PubMed]

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Comm. 177, 79-84 (2000).
[CrossRef]

Li, L.

F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Power-law scaling during shadowing growth of nanocolumns by oblique angle deposition,” J. Vac. Sci. Technol. A 25, 160-166 (2007).
[CrossRef]

Liu, S.-J.

Z.-C. Shen, W.-J. Kong, S.-J. Liu, J. Shen, J.-D. Shao, and Z.-X. Fan, “Refractive index analysis of graded index coatings prepared by glancing angle deposition,” Acta Phys. Sin. 55, 5157-5160 (2006).

Lu, T.-M.

F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Power-law scaling during shadowing growth of nanocolumns by oblique angle deposition,” J. Vac. Sci. Technol. A 25, 160-166 (2007).
[CrossRef]

Martinu, L.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

McCall, M. W.

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Comm. 177, 79-84 (2000).
[CrossRef]

McGahan, W. A.

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, 1999).

Modine, F. A.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (erratum),” Appl. Phys. Lett. 69, 2137-2137 (1996).
[CrossRef]

Nakamura, S.

S. Nakamura, “Principal phosophor materials and their optical properties,” in Phosophor Handbook, 2nd ed., W. M. Yen, S. Shionoya, and H. Yamamoto, eds. (CRC Press, 2007).

Ogino, E.

T. Tsutsui, N. Takada, S. Saito, and E. Ogino, “Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure,” Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

Ohno, K.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor,” Appl. Phys. Lett. 76, 1549-1551 (2000).
[CrossRef]

Pelliccione, M.

F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Power-law scaling during shadowing growth of nanocolumns by oblique angle deposition,” J. Vac. Sci. Technol. A 25, 160-166 (2007).
[CrossRef]

Poate, J. M.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
[CrossRef]

A. M. Glass, N. E. J. Hunt, J. M. Poate, E. F. Schubert, and G. J. Zydzik, “ Absorption resonant rare earth-doped micro-cavities,” U.S. patent 5,363,398 (8 November, 1994).

Pursel, S. M.

Robbie, K.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212-4219 (2003).
[CrossRef] [PubMed]

M. W. Seto, K. Robbie, D. Vick, M. J. Brett, and L. Kuhn, “Mechanical response of thin films with helical microstructures,” J. Vac. Sci. Technol. B 17, 2172-2177 (1999).
[CrossRef]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
[CrossRef]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin-films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032-1035 (1995).
[CrossRef]

K. Robbie and M. J. Brett, “Glancing angle deposition of thin films,” U.S. patent 6,206,065 (27 March, 2001).

K. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U.S. patent 5,866,204 (2 February, 1999).

Romestain, R.

S. Setzu, P. Ferrand, and R. Romestain, “Optical properties of multilayered porous silicon,” Mat. Sci. Eng. B-Solid 69-70, 34-42 (2000).
[CrossRef]

Saito, S.

T. Tsutsui, N. Takada, S. Saito, and E. Ogino, “Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure,” Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

N. Takada, T. Tsutsui, and S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032-2034 (1993).
[CrossRef]

Schubert, E. F.

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
[CrossRef]

A. M. Glass, N. E. J. Hunt, J. M. Poate, E. F. Schubert, and G. J. Zydzik, “ Absorption resonant rare earth-doped micro-cavities,” U.S. patent 5,363,398 (8 November, 1994).

Schubert, M. F.

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Senna, M.

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor,” Appl. Phys. Lett. 76, 1549-1551 (2000).
[CrossRef]

Seto, M. W.

M. W. Seto, K. Robbie, D. Vick, M. J. Brett, and L. Kuhn, “Mechanical response of thin films with helical microstructures,” J. Vac. Sci. Technol. B 17, 2172-2177 (1999).
[CrossRef]

Setzu, S.

S. Setzu, P. Ferrand, and R. Romestain, “Optical properties of multilayered porous silicon,” Mat. Sci. Eng. B-Solid 69-70, 34-42 (2000).
[CrossRef]

Shao, J.-D.

Z.-C. Shen, W.-J. Kong, S.-J. Liu, J. Shen, J.-D. Shao, and Z.-X. Fan, “Refractive index analysis of graded index coatings prepared by glancing angle deposition,” Acta Phys. Sin. 55, 5157-5160 (2006).

Shen, J.

Z.-C. Shen, W.-J. Kong, S.-J. Liu, J. Shen, J.-D. Shao, and Z.-X. Fan, “Refractive index analysis of graded index coatings prepared by glancing angle deposition,” Acta Phys. Sin. 55, 5157-5160 (2006).

Shen, Z.-C.

Z.-C. Shen, W.-J. Kong, S.-J. Liu, J. Shen, J.-D. Shao, and Z.-X. Fan, “Refractive index analysis of graded index coatings prepared by glancing angle deposition,” Acta Phys. Sin. 55, 5157-5160 (2006).

Singh, R.

S. L. Jones, D. Kumar, K.-G. Cho, R. Singh, and P. H. Holloway, “Pulsed laser deposition of Y2O3:Eu thin film phosphors,” Displays 19, 151-167 (1999).
[CrossRef]

Sit, J. C.

J. J. Steele, J. Gospodyn, J. C. Sit, and M. J. Brett, “Impact of morphology on high-speed humidity sensor performance,” IEEE Sens. J. 6, 24-27 (2006).
[CrossRef]

J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318-325 (2006).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, J. C. Sit, and M. J. Brett, “Evaporated nanostructured Y2O3:Eu thin films,” J. Nanosci. Nanotech. 5, 229-234 (2005).
[CrossRef]

A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,” Opt. Lett. 29, 2545-2547(2004).
[CrossRef] [PubMed]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
[CrossRef]

D. Vick, J. C. Sit, and M. J. Brett, “Glancing angle deposition of thin films” in Recent Developments in Vacuum Science and Technology, J. Dabrowski, ed. (Research Signpost, 2003), pp. 67-94.

Smy, T.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin-films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032-1035 (1995).
[CrossRef]

R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196-201 (1993).
[CrossRef]

Steele, J. J.

J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.-Mater. El. 18, 367-379 (2007).
[CrossRef]

J. J. Steele, J. Gospodyn, J. C. Sit, and M. J. Brett, “Impact of morphology on high-speed humidity sensor performance,” IEEE Sens. J. 6, 24-27 (2006).
[CrossRef]

Synowicki, R.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), Part I: Basic theory and typical applications,” Proc. SPIE. CR72, 3-28 (1999).

Tait, R. N.

R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196-201 (1993).
[CrossRef]

Takada, N.

T. Tsutsui, N. Takada, S. Saito, and E. Ogino, “Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure,” Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

N. Takada, T. Tsutsui, and S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032-2034 (1993).
[CrossRef]

Takaichi, K.

Tang, F.

F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Power-law scaling during shadowing growth of nanocolumns by oblique angle deposition,” J. Vac. Sci. Technol. A 25, 160-166 (2007).
[CrossRef]

Taschuk, M.

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Optical properties of porous nanostructured Y2O3:Eu thin films,” J. Vac. Sci. Technol. A 23, 856-861(2005).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, J. C. Sit, and M. J. Brett, “Evaporated nanostructured Y2O3:Eu thin films,” J. Nanosci. Nanotech. 5, 229-234 (2005).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Effects of film structure on photoluminescence emission properties of nanostructured Y2O3:Eu thin films,” Proc. SPIE 5510, 78-87 (2004).
[CrossRef]

Toader, O.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59-62 (2002).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, 1999).

Tsui, Y. Y.

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, J. C. Sit, and M. J. Brett, “Evaporated nanostructured Y2O3:Eu thin films,” J. Nanosci. Nanotech. 5, 229-234 (2005).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Optical properties of porous nanostructured Y2O3:Eu thin films,” J. Vac. Sci. Technol. A 23, 856-861(2005).
[CrossRef]

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Effects of film structure on photoluminescence emission properties of nanostructured Y2O3:Eu thin films,” Proc. SPIE 5510, 78-87 (2004).
[CrossRef]

Tsutsui, T.

T. Tsutsui, N. Takada, S. Saito, and E. Ogino, “Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure,” Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

N. Takada, T. Tsutsui, and S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032-2034 (1993).
[CrossRef]

Ueda, K.-i.

van Popta, A. C.

Vick, D.

M. W. Seto, K. Robbie, D. Vick, M. J. Brett, and L. Kuhn, “Mechanical response of thin films with helical microstructures,” J. Vac. Sci. Technol. B 17, 2172-2177 (1999).
[CrossRef]

D. Vick, J. C. Sit, and M. J. Brett, “Glancing angle deposition of thin films” in Recent Developments in Vacuum Science and Technology, J. Dabrowski, ed. (Research Signpost, 2003), pp. 67-94.

Vredenberg, A. M.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
[CrossRef]

Wang, G.-C.

F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Power-law scaling during shadowing growth of nanocolumns by oblique angle deposition,” J. Vac. Sci. Technol. A 25, 160-166 (2007).
[CrossRef]

Wang, H. H.

H. H. Wang and Y. P. Zhao, “Nanostructure evolution of YBa2Cu3Ox thin films grown by pulsed-laser glancing-angle deposition,” J. Vac. Sci. Technol. B 24, 1230-1233 (2006).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
[PubMed]

Wong, Y. H.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
[CrossRef]

Woo, S.-H.

S.-H. Woo and C. K. Hwangbo, “Optical anisotropy of TiO2 and MgF2 thin films prepared by glancing angle deposition,” J. Korean Phys. Soc. 49, 2136-2142 (2006).

Woollam, J. A.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), Part I: Basic theory and typical applications,” Proc. SPIE. CR72, 3-28 (1999).

Wu, Q. H.

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Comm. 177, 79-84 (2000).
[CrossRef]

Xi, J.-Q.

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Zhao, Y. P.

H. H. Wang and Y. P. Zhao, “Nanostructure evolution of YBa2Cu3Ox thin films grown by pulsed-laser glancing-angle deposition,” J. Vac. Sci. Technol. B 24, 1230-1233 (2006).
[CrossRef]

Zydzik, G. J.

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
[CrossRef]

A. M. Glass, N. E. J. Hunt, J. M. Poate, E. F. Schubert, and G. J. Zydzik, “ Absorption resonant rare earth-doped micro-cavities,” U.S. patent 5,363,398 (8 November, 1994).

Acta Phys. Sin.

Z.-C. Shen, W.-J. Kong, S.-J. Liu, J. Shen, J.-D. Shao, and Z.-X. Fan, “Refractive index analysis of graded index coatings prepared by glancing angle deposition,” Acta Phys. Sin. 55, 5157-5160 (2006).

Appl. Opt.

Appl. Phys. Lett.

N. Takada, T. Tsutsui, and S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032-2034 (1993).
[CrossRef]

T. Tsutsui, N. Takada, S. Saito, and E. Ogino, “Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure,” Appl. Phys. Lett. 65, 1868-1870 (1994).
[CrossRef]

E. F. Schubert, N. E. J. Hunt, A. M. Vredenberg, T. D. Harris, J. M. Poate, D. C. Jacobson, Y. H. Wong, and G. J. Zydzik, “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 2603-2605 (1993).
[CrossRef]

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor,” Appl. Phys. Lett. 76, 1549-1551 (2000).
[CrossRef]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region (erratum),” Appl. Phys. Lett. 69, 2137-2137 (1996).
[CrossRef]

Displays

S. L. Jones, D. Kumar, K.-G. Cho, R. Singh, and P. H. Holloway, “Pulsed laser deposition of Y2O3:Eu thin film phosphors,” Displays 19, 151-167 (1999).
[CrossRef]

IEEE Sens. J.

J. J. Steele, J. Gospodyn, J. C. Sit, and M. J. Brett, “Impact of morphology on high-speed humidity sensor performance,” IEEE Sens. J. 6, 24-27 (2006).
[CrossRef]

J. Appl. Phys.

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006).
[CrossRef]

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

J. Korean Phys. Soc.

S.-H. Woo and C. K. Hwangbo, “Optical anisotropy of TiO2 and MgF2 thin films prepared by glancing angle deposition,” J. Korean Phys. Soc. 49, 2136-2142 (2006).

J. Mater. Sci.-Mater. El.

J. J. Steele and M. J. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.-Mater. El. 18, 367-379 (2007).
[CrossRef]

J. Nanosci. Nanotech.

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, J. C. Sit, and M. J. Brett, “Evaporated nanostructured Y2O3:Eu thin films,” J. Nanosci. Nanotech. 5, 229-234 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. A

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Optical properties of porous nanostructured Y2O3:Eu thin films,” J. Vac. Sci. Technol. A 23, 856-861(2005).
[CrossRef]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin-films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032-1035 (1995).
[CrossRef]

F. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Power-law scaling during shadowing growth of nanocolumns by oblique angle deposition,” J. Vac. Sci. Technol. A 25, 160-166 (2007).
[CrossRef]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

J. Vac. Sci. Technol. B

M. W. Seto, K. Robbie, D. Vick, M. J. Brett, and L. Kuhn, “Mechanical response of thin films with helical microstructures,” J. Vac. Sci. Technol. B 17, 2172-2177 (1999).
[CrossRef]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
[CrossRef]

H. H. Wang and Y. P. Zhao, “Nanostructure evolution of YBa2Cu3Ox thin films grown by pulsed-laser glancing-angle deposition,” J. Vac. Sci. Technol. B 24, 1230-1233 (2006).
[CrossRef]

Mat. Sci. Eng. B-Solid

S. Setzu, P. Ferrand, and R. Romestain, “Optical properties of multilayered porous silicon,” Mat. Sci. Eng. B-Solid 69-70, 34-42 (2000).
[CrossRef]

Nano Lett.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59-62 (2002).
[CrossRef]

Opt. Comm.

I. J. Hodgkinson, Q. H. Wu, A. Lakhtakia, and M. W. McCall, “Spectral-hole filter fabricated using sculptured thin-film technology,” Opt. Comm. 177, 79-84 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

J. Gospodyn and J. C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318-325 (2006).
[CrossRef]

Proc. SPIE

P. C. P. Hrudey, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, and M. J. Brett, “Effects of film structure on photoluminescence emission properties of nanostructured Y2O3:Eu thin films,” Proc. SPIE 5510, 78-87 (2004).
[CrossRef]

Proc. SPIE.

J. A. Woollam, B. Johs, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, “Overview of variable angle spectroscopic ellipsometry (VASE), Part I: Basic theory and typical applications,” Proc. SPIE. CR72, 3-28 (1999).

Thin Solid Films

R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196-201 (1993).
[CrossRef]

Other

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, 1999).

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
[CrossRef]

S. Nakamura, “Principal phosophor materials and their optical properties,” in Phosophor Handbook, 2nd ed., W. M. Yen, S. Shionoya, and H. Yamamoto, eds. (CRC Press, 2007).

A. M. Glass, N. E. J. Hunt, J. M. Poate, E. F. Schubert, and G. J. Zydzik, “ Absorption resonant rare earth-doped micro-cavities,” U.S. patent 5,363,398 (8 November, 1994).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
[PubMed]

D. Vick, J. C. Sit, and M. J. Brett, “Glancing angle deposition of thin films” in Recent Developments in Vacuum Science and Technology, J. Dabrowski, ed. (Research Signpost, 2003), pp. 67-94.

K. Robbie and M. J. Brett, “Glancing angle deposition of thin films,” U.S. patent 6,206,065 (27 March, 2001).

K. Robbie and M. J. Brett, “Method of depositing shadow sculpted thin films,” U.S. patent 5,866,204 (2 February, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross-sectional SEM image of films from (a) set A and (b) set B.

Fig. 2
Fig. 2

Normal-incidence transmittance of film (a) set A and (b) set B on fused silica substrates as-deposited (dotted) and annealed at 600 ° C for 1 h (solid). Arrows indicate the transmittance minima. The data for the wavelength range from 200 to 300 nm was measured using the spectrophotometer.

Fig. 3
Fig. 3

Experimental (dots) and model (solid line) curves for (a)  normalized Mueller matrix data of the as-deposited film from set A on a silicon substrate measured in reflectance at an angle of 50 ° , and (b) the normal-incidence transmittance for the as-deposited film from set A on a fused silica substrate. For clarity, the M i j elements below a wavelength of 400 nm , and those near zero were not shown, and only every second experimental data point is shown.

Fig. 4
Fig. 4

(a) Experimental Ψ (•) and Δ (○) and with best model fits (solid and dashed lines) for a 70 nm thick Y 2 O 3 :Eu film deposited at α = 0 ° , annealed at 600 ° C . Only every fifth experimental point and only data from an angle of incidence of 70 ° are shown for clarity. Also shown (inset) are the resultant n (solid) and k (dashed) using Cauchy and Urbach dispersion. (b) Model (solid) and experimental (dots) transmittance of film set A on fused silica after annealing at 600 ° C .

Fig. 5
Fig. 5

Angular emission profile of film set A (•) and film set B (○) annealed at 800 ° C on fused silica substrates. The dashed line is an example of a Lambertian emission profile given in arbitrary units. Error bars ( 1 σ on five measurements) are smaller than the data points and are thus not shown. Inset is an example of the PL emission spectra, taken from film set A annealed at 800 ° C .

Fig. 6
Fig. 6

Charge transfer band intensity for nanocrystalline Y 2 O 3 :Eu as a function of wavelength as quoted by Igarishi et al. [41]. The inset is the complete band as a function of energy (dots) with a Tauc–Lorentz oscillator function [42, 43] applied to it (solid).

Fig. 7
Fig. 7

(a) Angular emission pattern for films from set A (dots) along with the predicted angular emission pattern from the model (solid) with a correction factor accounting for the laser incidence angle. (b) Theoretical angular dependence of the transmittance for the films from set A at the emission wavelength (solid) and the excitation wavelength (dashed).

Tables (2)

Tables Icon

Table 1 Summary of the Physical and Optical Parameters for the Films

Tables Icon

Table 2 Optical Model Layers to Describe a Film from Set A (As-Deposited)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E P = T p ( 266 nm ) 2 [ T p ( 611 nm ) ( T p ( 611 nm ) T p ( 611 nm ) + T s ( 611 nm ) ) + T s ( 611 nm ) ( T s ( 611 nm ) T p ( 611 nm ) + T s ( 611 nm ) ) ] .

Metrics