Abstract

The dynamics of gas flow in a hollow core photonic bandgap fiber is studied over four decades of pressure covering free molecular flow as well as hydrodynamic flow. Expressions are derived that allow for determination of the pressure inside the fiber as a function of time and position in the limits of Knudsen number Kn≫1 and Kn≪1. The expressions, which are validated by using absorption lines of acetylene as probes of the pressure inside the fiber, provide a straightforward way of predicting the temporal response for gas sensors of any fiber geometry.

© 2008 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription