Abstract

Maintaining high resolving power is a primary challenge in hard x-ray spectroscopy of newly developed bright and transient x-ray sources such as laser-produced plasmas. To address this challenge, the line widths in x-ray spectra with energies in the 17keV to 70keV range were recorded by positioning the detectors on and behind the focal circles of Cauchois type transmission-crystal spectrometers. To analyze and understand the observed line widths, we developed a geometrical model that accounts for source broadening and various instrumental broadening mechanisms. The x-ray sources were laboratory Mo or W electron-bombarded anodes, and the spectra were recorded on photostimulable phosphor image plates. For these relatively small x-ray sources, it was found that when the detector was placed on or near the focal circle, the line widths were dominated by the effective spatial resolution of the detector. When the detector was positioned beyond the focal circle, the line widths were determined primarily by source-size broadening. Moreover, the separation between the spectral lines increased with distance behind the focal circle faster than the line widths, resulting in increased resolving power with distance. Contributions to line broadenings caused by the crystal thickness, crystal rocking curve width, geometrical aberrations, and natural widths of the x-ray transitions were in all cases smaller than detector and source broadening, but were significant for some spectrometer geometries. The various contributions to the line widths, calculated using simple analytical expressions, were in good agreement with the measured line widths for a variety of spectrometer and source conditions. These modeling and experimental results enable the design of hard x-ray spectrometers that are optimized for high resolving power and for the measurement of the x-ray source size from the line widths recorded behind the focal circle.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Cauchois, “Spectrographie des rayons x par transmission d'un faisceau non canalise a travers un cristal courbe,” J. de Physique. 3320 (1932). English translation is available at http://spectroscopy.nrl.navy.mil/.
  2. A. Compton and S. Allison, X-Rays in Theory and Experiments (van Nostrand, 1935), p. 750.
  3. L. T. Hudson, A. Henins, J. F. Seely, and G. E. Holland, “Diagnostic spectrometers for high energy density x-ray sources,” in 15th International Conference on Atomic Processes in Plasmas, J. D. Gillaspy, J. J. Curry, and W. Wiese, eds. (American Institute of Physics, 2007, pp. 34-41.
  4. L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
    [CrossRef]
  5. J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421 (2003).
    [CrossRef]
  6. J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
    [CrossRef]
  7. L. T. Hudson, R. Atkin, C. A. Back, A. Henins, G. E. Holland, J. F. Seely, and C. Szabo, “X-ray spectroscopy at next-generation inertial confinement fusion sources: anticipating needs and challenges,” Radiat. Phys. Chem. 75, 1784 (2006).
    [CrossRef]
  8. C. I. Szabo, L. T. Hudson, A. Henins, G. E. Holland, R. Atkin, and J. F. Seely, “Mitigation of fluorescence and scattering in reflection convex-crystal x-ray spectrometers,” Radiat. Phys. Chem. 75, 1824 (2006).
    [CrossRef]
  9. J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
    [CrossRef]
  10. R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123 (1994).
    [CrossRef] [PubMed]
  11. C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectroscopy for mammographic x-ray sources,” Br. J. Radiol. 69, 636 (1996).
    [CrossRef] [PubMed]
  12. L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659 (1996).
    [CrossRef] [PubMed]
  13. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, 1967), p. 8.
  14. E. O. Baronova, M. M. Stepanenko, and N. R. Pereira, “Cauchois-Johansson x-ray spectrograph for 1.5-400 keV energy range,” Rev. Sci. Instrum. 72, 1416 (2001).
    [CrossRef]
  15. S. I. Salem and P. L. Lee, “Experimental widths of K and L x-ray lines,” At. Data Nucl. Data Tables 18, 233 (1976).
    [CrossRef]
  16. D. A. Lind, W. J. West, and J. W. M. DuMond, “X-ray and gamma-ray reflection properties from 500 x units to nine x units of unstressed and of bent quartz plates for use in the two-meter curved-crystal focusing gamma-ray spectrometer,” Phys. Rev. 77, 475 (1950).
    [CrossRef]
  17. P. Suortti, “Focusing monochromators for high energy synchrotron radiation,” Rev. Sci. Instrum. 63, 942 (1992).
    [CrossRef]
  18. E. Andersson, G. Hölzer, E. Förster, M. Grätz, L. Kiernan, A. Sjögren, and S. Svanberg, “Coronary angiography using laser plasma sources: x-ray source efficiency and optimization of a bent crystal monochromator,” J. Appl. Phys. 90, 3048(2001).
    [CrossRef]
  19. M. Sanchez del Rio and R. J. Dejus, “Computer simulation of bent perfect crystal diffraction profiles,” Proc. SPIE 3151, 312(1997).
    [CrossRef]
  20. S. Takagi, “A dynamical theory of diffraction for a distorted crystal,” J. Phys. Soc. Jpn. 29, 1239 (1969).
    [CrossRef]
  21. D. Taupin, “Theorie dynamique de la diffraction des rayons x par les crustaux deformes,” Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964).
  22. O. I. Sumbayev and A. I. Smirnov, “4-meter Cauchois spectrometer for neutron-capture gamma-radiation research,” Nucl. Instrum. Methods 22, 125 (1963).
    [CrossRef]
  23. R. D. Deslattes, E. G. Kessler, P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).
    [CrossRef]
  24. H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103 (2007).
    [CrossRef] [PubMed]

2007

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103 (2007).
[CrossRef] [PubMed]

2006

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

L. T. Hudson, R. Atkin, C. A. Back, A. Henins, G. E. Holland, J. F. Seely, and C. Szabo, “X-ray spectroscopy at next-generation inertial confinement fusion sources: anticipating needs and challenges,” Radiat. Phys. Chem. 75, 1784 (2006).
[CrossRef]

C. I. Szabo, L. T. Hudson, A. Henins, G. E. Holland, R. Atkin, and J. F. Seely, “Mitigation of fluorescence and scattering in reflection convex-crystal x-ray spectrometers,” Radiat. Phys. Chem. 75, 1824 (2006).
[CrossRef]

2003

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421 (2003).
[CrossRef]

R. D. Deslattes, E. G. Kessler, P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).
[CrossRef]

2002

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

2001

E. O. Baronova, M. M. Stepanenko, and N. R. Pereira, “Cauchois-Johansson x-ray spectrograph for 1.5-400 keV energy range,” Rev. Sci. Instrum. 72, 1416 (2001).
[CrossRef]

E. Andersson, G. Hölzer, E. Förster, M. Grätz, L. Kiernan, A. Sjögren, and S. Svanberg, “Coronary angiography using laser plasma sources: x-ray source efficiency and optimization of a bent crystal monochromator,” J. Appl. Phys. 90, 3048(2001).
[CrossRef]

1997

M. Sanchez del Rio and R. J. Dejus, “Computer simulation of bent perfect crystal diffraction profiles,” Proc. SPIE 3151, 312(1997).
[CrossRef]

1996

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectroscopy for mammographic x-ray sources,” Br. J. Radiol. 69, 636 (1996).
[CrossRef] [PubMed]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659 (1996).
[CrossRef] [PubMed]

1994

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123 (1994).
[CrossRef] [PubMed]

1992

P. Suortti, “Focusing monochromators for high energy synchrotron radiation,” Rev. Sci. Instrum. 63, 942 (1992).
[CrossRef]

1976

S. I. Salem and P. L. Lee, “Experimental widths of K and L x-ray lines,” At. Data Nucl. Data Tables 18, 233 (1976).
[CrossRef]

1969

S. Takagi, “A dynamical theory of diffraction for a distorted crystal,” J. Phys. Soc. Jpn. 29, 1239 (1969).
[CrossRef]

1964

D. Taupin, “Theorie dynamique de la diffraction des rayons x par les crustaux deformes,” Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964).

1963

O. I. Sumbayev and A. I. Smirnov, “4-meter Cauchois spectrometer for neutron-capture gamma-radiation research,” Nucl. Instrum. Methods 22, 125 (1963).
[CrossRef]

1950

D. A. Lind, W. J. West, and J. W. M. DuMond, “X-ray and gamma-ray reflection properties from 500 x units to nine x units of unstressed and of bent quartz plates for use in the two-meter curved-crystal focusing gamma-ray spectrometer,” Phys. Rev. 77, 475 (1950).
[CrossRef]

Allison, S.

A. Compton and S. Allison, X-Rays in Theory and Experiments (van Nostrand, 1935), p. 750.

Andersson, E.

E. Andersson, G. Hölzer, E. Förster, M. Grätz, L. Kiernan, A. Sjögren, and S. Svanberg, “Coronary angiography using laser plasma sources: x-ray source efficiency and optimization of a bent crystal monochromator,” J. Appl. Phys. 90, 3048(2001).
[CrossRef]

Anton, J.

R. D. Deslattes, E. G. Kessler, P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).
[CrossRef]

Atkin, R.

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

L. T. Hudson, R. Atkin, C. A. Back, A. Henins, G. E. Holland, J. F. Seely, and C. Szabo, “X-ray spectroscopy at next-generation inertial confinement fusion sources: anticipating needs and challenges,” Radiat. Phys. Chem. 75, 1784 (2006).
[CrossRef]

C. I. Szabo, L. T. Hudson, A. Henins, G. E. Holland, R. Atkin, and J. F. Seely, “Mitigation of fluorescence and scattering in reflection convex-crystal x-ray spectrometers,” Radiat. Phys. Chem. 75, 1824 (2006).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

Back, C. A.

L. T. Hudson, R. Atkin, C. A. Back, A. Henins, G. E. Holland, J. F. Seely, and C. Szabo, “X-ray spectroscopy at next-generation inertial confinement fusion sources: anticipating needs and challenges,” Radiat. Phys. Chem. 75, 1784 (2006).
[CrossRef]

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

Baronova, E. O.

E. O. Baronova, M. M. Stepanenko, and N. R. Pereira, “Cauchois-Johansson x-ray spectrograph for 1.5-400 keV energy range,” Rev. Sci. Instrum. 72, 1416 (2001).
[CrossRef]

Bar-Shalom, A.

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421 (2003).
[CrossRef]

Cauchois, Y.

Y. Cauchois, “Spectrographie des rayons x par transmission d'un faisceau non canalise a travers un cristal courbe,” J. de Physique. 3320 (1932). English translation is available at http://spectroscopy.nrl.navy.mil/.

Chantler, C. T.

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659 (1996).
[CrossRef] [PubMed]

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectroscopy for mammographic x-ray sources,” Br. J. Radiol. 69, 636 (1996).
[CrossRef] [PubMed]

Chung, H.-K.

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

Compton, A.

A. Compton and S. Allison, X-Rays in Theory and Experiments (van Nostrand, 1935), p. 750.

Constantin, C.

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

de Billy, L.

R. D. Deslattes, E. G. Kessler, P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).
[CrossRef]

Dejus, R. J.

M. Sanchez del Rio and R. J. Dejus, “Computer simulation of bent perfect crystal diffraction profiles,” Proc. SPIE 3151, 312(1997).
[CrossRef]

del Rio, M. Sanchez

M. Sanchez del Rio and R. J. Dejus, “Computer simulation of bent perfect crystal diffraction profiles,” Proc. SPIE 3151, 312(1997).
[CrossRef]

Deslattes, R. D.

R. D. Deslattes, E. G. Kessler, P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectroscopy for mammographic x-ray sources,” Br. J. Radiol. 69, 636 (1996).
[CrossRef] [PubMed]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659 (1996).
[CrossRef] [PubMed]

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123 (1994).
[CrossRef] [PubMed]

Doron, R.

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421 (2003).
[CrossRef]

Duggan, D. M.

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103 (2007).
[CrossRef] [PubMed]

DuMond, J. W. M.

D. A. Lind, W. J. West, and J. W. M. DuMond, “X-ray and gamma-ray reflection properties from 500 x units to nine x units of unstressed and of bent quartz plates for use in the two-meter curved-crystal focusing gamma-ray spectrometer,” Phys. Rev. 77, 475 (1950).
[CrossRef]

Förster, E.

E. Andersson, G. Hölzer, E. Förster, M. Grätz, L. Kiernan, A. Sjögren, and S. Svanberg, “Coronary angiography using laser plasma sources: x-ray source efficiency and optimization of a bent crystal monochromator,” J. Appl. Phys. 90, 3048(2001).
[CrossRef]

Gonzalez, A. L.

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103 (2007).
[CrossRef] [PubMed]

Grätz, M.

E. Andersson, G. Hölzer, E. Förster, M. Grätz, L. Kiernan, A. Sjögren, and S. Svanberg, “Coronary angiography using laser plasma sources: x-ray source efficiency and optimization of a bent crystal monochromator,” J. Appl. Phys. 90, 3048(2001).
[CrossRef]

Henins, A.

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

C. I. Szabo, L. T. Hudson, A. Henins, G. E. Holland, R. Atkin, and J. F. Seely, “Mitigation of fluorescence and scattering in reflection convex-crystal x-ray spectrometers,” Radiat. Phys. Chem. 75, 1824 (2006).
[CrossRef]

L. T. Hudson, R. Atkin, C. A. Back, A. Henins, G. E. Holland, J. F. Seely, and C. Szabo, “X-ray spectroscopy at next-generation inertial confinement fusion sources: anticipating needs and challenges,” Radiat. Phys. Chem. 75, 1784 (2006).
[CrossRef]

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659 (1996).
[CrossRef] [PubMed]

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectroscopy for mammographic x-ray sources,” Br. J. Radiol. 69, 636 (1996).
[CrossRef] [PubMed]

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123 (1994).
[CrossRef] [PubMed]

L. T. Hudson, A. Henins, J. F. Seely, and G. E. Holland, “Diagnostic spectrometers for high energy density x-ray sources,” in 15th International Conference on Atomic Processes in Plasmas, J. D. Gillaspy, J. J. Curry, and W. Wiese, eds. (American Institute of Physics, 2007, pp. 34-41.

Holland, G.

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

Holland, G. E.

C. I. Szabo, L. T. Hudson, A. Henins, G. E. Holland, R. Atkin, and J. F. Seely, “Mitigation of fluorescence and scattering in reflection convex-crystal x-ray spectrometers,” Radiat. Phys. Chem. 75, 1824 (2006).
[CrossRef]

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

L. T. Hudson, R. Atkin, C. A. Back, A. Henins, G. E. Holland, J. F. Seely, and C. Szabo, “X-ray spectroscopy at next-generation inertial confinement fusion sources: anticipating needs and challenges,” Radiat. Phys. Chem. 75, 1784 (2006).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

L. T. Hudson, A. Henins, J. F. Seely, and G. E. Holland, “Diagnostic spectrometers for high energy density x-ray sources,” in 15th International Conference on Atomic Processes in Plasmas, J. D. Gillaspy, J. J. Curry, and W. Wiese, eds. (American Institute of Physics, 2007, pp. 34-41.

Hölzer, G.

E. Andersson, G. Hölzer, E. Förster, M. Grätz, L. Kiernan, A. Sjögren, and S. Svanberg, “Coronary angiography using laser plasma sources: x-ray source efficiency and optimization of a bent crystal monochromator,” J. Appl. Phys. 90, 3048(2001).
[CrossRef]

Hudson, L.

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

Hudson, L. T.

L. T. Hudson, R. Atkin, C. A. Back, A. Henins, G. E. Holland, J. F. Seely, and C. Szabo, “X-ray spectroscopy at next-generation inertial confinement fusion sources: anticipating needs and challenges,” Radiat. Phys. Chem. 75, 1784 (2006).
[CrossRef]

C. I. Szabo, L. T. Hudson, A. Henins, G. E. Holland, R. Atkin, and J. F. Seely, “Mitigation of fluorescence and scattering in reflection convex-crystal x-ray spectrometers,” Radiat. Phys. Chem. 75, 1824 (2006).
[CrossRef]

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421 (2003).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectroscopy for mammographic x-ray sources,” Br. J. Radiol. 69, 636 (1996).
[CrossRef] [PubMed]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659 (1996).
[CrossRef] [PubMed]

L. T. Hudson, A. Henins, J. F. Seely, and G. E. Holland, “Diagnostic spectrometers for high energy density x-ray sources,” in 15th International Conference on Atomic Processes in Plasmas, J. D. Gillaspy, J. J. Curry, and W. Wiese, eds. (American Institute of Physics, 2007, pp. 34-41.

Indelicato, P.

R. D. Deslattes, E. G. Kessler, P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).
[CrossRef]

Ji, H.

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103 (2007).
[CrossRef] [PubMed]

Kessler, E. G.

R. D. Deslattes, E. G. Kessler, P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).
[CrossRef]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659 (1996).
[CrossRef] [PubMed]

Kiernan, L.

E. Andersson, G. Hölzer, E. Förster, M. Grätz, L. Kiernan, A. Sjögren, and S. Svanberg, “Coronary angiography using laser plasma sources: x-ray source efficiency and optimization of a bent crystal monochromator,” J. Appl. Phys. 90, 3048(2001).
[CrossRef]

Laming, J.

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

Lee, P. L.

S. I. Salem and P. L. Lee, “Experimental widths of K and L x-ray lines,” At. Data Nucl. Data Tables 18, 233 (1976).
[CrossRef]

Lee, R. W.

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

Levin, J. C.

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123 (1994).
[CrossRef] [PubMed]

Li, H. H.

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103 (2007).
[CrossRef] [PubMed]

Lind, D. A.

D. A. Lind, W. J. West, and J. W. M. DuMond, “X-ray and gamma-ray reflection properties from 500 x units to nine x units of unstressed and of bent quartz plates for use in the two-meter curved-crystal focusing gamma-ray spectrometer,” Phys. Rev. 77, 475 (1950).
[CrossRef]

Lindroth, E.

R. D. Deslattes, E. G. Kessler, P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).
[CrossRef]

Martin, L.

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

Meyerhofer, D. D.

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

Park, H.-S.

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

Patel, P.

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

Pereira, N. R.

E. O. Baronova, M. M. Stepanenko, and N. R. Pereira, “Cauchois-Johansson x-ray spectrograph for 1.5-400 keV energy range,” Rev. Sci. Instrum. 72, 1416 (2001).
[CrossRef]

Salem, S. I.

S. I. Salem and P. L. Lee, “Experimental widths of K and L x-ray lines,” At. Data Nucl. Data Tables 18, 233 (1976).
[CrossRef]

Samson, J. A. R.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, 1967), p. 8.

Schweppe, J. E.

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659 (1996).
[CrossRef] [PubMed]

Seely, J. F.

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

C. I. Szabo, L. T. Hudson, A. Henins, G. E. Holland, R. Atkin, and J. F. Seely, “Mitigation of fluorescence and scattering in reflection convex-crystal x-ray spectrometers,” Radiat. Phys. Chem. 75, 1824 (2006).
[CrossRef]

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

L. T. Hudson, R. Atkin, C. A. Back, A. Henins, G. E. Holland, J. F. Seely, and C. Szabo, “X-ray spectroscopy at next-generation inertial confinement fusion sources: anticipating needs and challenges,” Radiat. Phys. Chem. 75, 1784 (2006).
[CrossRef]

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421 (2003).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

L. T. Hudson, A. Henins, J. F. Seely, and G. E. Holland, “Diagnostic spectrometers for high energy density x-ray sources,” in 15th International Conference on Atomic Processes in Plasmas, J. D. Gillaspy, J. J. Curry, and W. Wiese, eds. (American Institute of Physics, 2007, pp. 34-41.

Sjögren, A.

E. Andersson, G. Hölzer, E. Förster, M. Grätz, L. Kiernan, A. Sjögren, and S. Svanberg, “Coronary angiography using laser plasma sources: x-ray source efficiency and optimization of a bent crystal monochromator,” J. Appl. Phys. 90, 3048(2001).
[CrossRef]

Smirnov, A. I.

O. I. Sumbayev and A. I. Smirnov, “4-meter Cauchois spectrometer for neutron-capture gamma-radiation research,” Nucl. Instrum. Methods 22, 125 (1963).
[CrossRef]

Stepanenko, M. M.

E. O. Baronova, M. M. Stepanenko, and N. R. Pereira, “Cauchois-Johansson x-ray spectrograph for 1.5-400 keV energy range,” Rev. Sci. Instrum. 72, 1416 (2001).
[CrossRef]

Stoeckl, C.

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421 (2003).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

Sumbayev, O. I.

O. I. Sumbayev and A. I. Smirnov, “4-meter Cauchois spectrometer for neutron-capture gamma-radiation research,” Nucl. Instrum. Methods 22, 125 (1963).
[CrossRef]

Suortti, P.

P. Suortti, “Focusing monochromators for high energy synchrotron radiation,” Rev. Sci. Instrum. 63, 942 (1992).
[CrossRef]

Svanberg, S.

E. Andersson, G. Hölzer, E. Förster, M. Grätz, L. Kiernan, A. Sjögren, and S. Svanberg, “Coronary angiography using laser plasma sources: x-ray source efficiency and optimization of a bent crystal monochromator,” J. Appl. Phys. 90, 3048(2001).
[CrossRef]

Szabo, C.

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

L. T. Hudson, R. Atkin, C. A. Back, A. Henins, G. E. Holland, J. F. Seely, and C. Szabo, “X-ray spectroscopy at next-generation inertial confinement fusion sources: anticipating needs and challenges,” Radiat. Phys. Chem. 75, 1784 (2006).
[CrossRef]

Szabo, C. I.

C. I. Szabo, L. T. Hudson, A. Henins, G. E. Holland, R. Atkin, and J. F. Seely, “Mitigation of fluorescence and scattering in reflection convex-crystal x-ray spectrometers,” Radiat. Phys. Chem. 75, 1824 (2006).
[CrossRef]

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

Takagi, S.

S. Takagi, “A dynamical theory of diffraction for a distorted crystal,” J. Phys. Soc. Jpn. 29, 1239 (1969).
[CrossRef]

Taupin, D.

D. Taupin, “Theorie dynamique de la diffraction des rayons x par les crustaux deformes,” Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964).

Tommasini, R.

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

Walker, M. D.

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123 (1994).
[CrossRef] [PubMed]

West, W. J.

D. A. Lind, W. J. West, and J. W. M. DuMond, “X-ray and gamma-ray reflection properties from 500 x units to nine x units of unstressed and of bent quartz plates for use in the two-meter curved-crystal focusing gamma-ray spectrometer,” Phys. Rev. 77, 475 (1950).
[CrossRef]

At. Data Nucl. Data Tables

S. I. Salem and P. L. Lee, “Experimental widths of K and L x-ray lines,” At. Data Nucl. Data Tables 18, 233 (1976).
[CrossRef]

Br. J. Radiol.

C. T. Chantler, R. D. Deslattes, A. Henins, and L. T. Hudson, “Flat and curved crystal spectroscopy for mammographic x-ray sources,” Br. J. Radiol. 69, 636 (1996).
[CrossRef] [PubMed]

Bull. Soc. Fr. Mineral. Crystallogr.

D. Taupin, “Theorie dynamique de la diffraction des rayons x par les crustaux deformes,” Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964).

High Energy Density Phys.

J. F. Seely, G. Holland, L. Hudson, C. Szabo, A. Henins, H.-S. Park, P. Patel, R. Tommasini, and J. Laming, “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense fetmosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).
[CrossRef]

J. Appl. Phys.

E. Andersson, G. Hölzer, E. Förster, M. Grätz, L. Kiernan, A. Sjögren, and S. Svanberg, “Coronary angiography using laser plasma sources: x-ray source efficiency and optimization of a bent crystal monochromator,” J. Appl. Phys. 90, 3048(2001).
[CrossRef]

J. Phys. Soc. Jpn.

S. Takagi, “A dynamical theory of diffraction for a distorted crystal,” J. Phys. Soc. Jpn. 29, 1239 (1969).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

J. F. Seely, R. Doron, A. Bar-Shalom, L. T. Hudson, and C. Stoeckl, “Hard x-ray emission from laser-produced plasmas of U and Pb recorded by a transmission crystal spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 81, 421 (2003).
[CrossRef]

J. F. Seely, C. A. Back, C. Constantin, R. W. Lee, H.-K. Chung, L. T. Hudson, C. I. Szabo, A. Henins, G. E. Holland, R. Atkin, and L. Martin, “Krypton K-shell x-ray spectra recorded by the HENEX spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 99, 572 (2006).
[CrossRef]

Med. Phys.

R. D. Deslattes, J. C. Levin, M. D. Walker, and A. Henins, “Noninvasive high-voltage measurement in mammography by crystal diffraction spectroscopy,” Med. Phys. 21, 123 (1994).
[CrossRef] [PubMed]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chantler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659 (1996).
[CrossRef] [PubMed]

H. H. Li, A. L. Gonzalez, H. Ji, and D. M. Duggan, “Dose response of BaFBrI:Eu storage phosphor plates exposed to megavoltage photon beams,” Med. Phys. 34, 103 (2007).
[CrossRef] [PubMed]

Nucl. Instrum. Methods

O. I. Sumbayev and A. I. Smirnov, “4-meter Cauchois spectrometer for neutron-capture gamma-radiation research,” Nucl. Instrum. Methods 22, 125 (1963).
[CrossRef]

Phys. Rev.

D. A. Lind, W. J. West, and J. W. M. DuMond, “X-ray and gamma-ray reflection properties from 500 x units to nine x units of unstressed and of bent quartz plates for use in the two-meter curved-crystal focusing gamma-ray spectrometer,” Phys. Rev. 77, 475 (1950).
[CrossRef]

Proc. SPIE

M. Sanchez del Rio and R. J. Dejus, “Computer simulation of bent perfect crystal diffraction profiles,” Proc. SPIE 3151, 312(1997).
[CrossRef]

Radiat. Phys. Chem.

L. T. Hudson, R. Atkin, C. A. Back, A. Henins, G. E. Holland, J. F. Seely, and C. Szabo, “X-ray spectroscopy at next-generation inertial confinement fusion sources: anticipating needs and challenges,” Radiat. Phys. Chem. 75, 1784 (2006).
[CrossRef]

C. I. Szabo, L. T. Hudson, A. Henins, G. E. Holland, R. Atkin, and J. F. Seely, “Mitigation of fluorescence and scattering in reflection convex-crystal x-ray spectrometers,” Radiat. Phys. Chem. 75, 1824 (2006).
[CrossRef]

Rev. Mod. Phys.

R. D. Deslattes, E. G. Kessler, P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35 (2003).
[CrossRef]

Rev. Sci. Instrum.

P. Suortti, “Focusing monochromators for high energy synchrotron radiation,” Rev. Sci. Instrum. 63, 942 (1992).
[CrossRef]

L. T. Hudson, A. Henins, R. D. Deslattes, J. F. Seely, G. E. Holland, R. Atkin, L. Martin, D. D. Meyerhofer, and C. Stoeckl, “A high-energy x-ray spectrometer diagnostic for the OMEGA laser,” Rev. Sci. Instrum. 73, 2270 (2002).
[CrossRef]

E. O. Baronova, M. M. Stepanenko, and N. R. Pereira, “Cauchois-Johansson x-ray spectrograph for 1.5-400 keV energy range,” Rev. Sci. Instrum. 72, 1416 (2001).
[CrossRef]

Other

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, 1967), p. 8.

Y. Cauchois, “Spectrographie des rayons x par transmission d'un faisceau non canalise a travers un cristal courbe,” J. de Physique. 3320 (1932). English translation is available at http://spectroscopy.nrl.navy.mil/.

A. Compton and S. Allison, X-Rays in Theory and Experiments (van Nostrand, 1935), p. 750.

L. T. Hudson, A. Henins, J. F. Seely, and G. E. Holland, “Diagnostic spectrometers for high energy density x-ray sources,” in 15th International Conference on Atomic Processes in Plasmas, J. D. Gillaspy, J. J. Curry, and W. Wiese, eds. (American Institute of Physics, 2007, pp. 34-41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the transmission-crystal spectrometer module.

Fig. 2
Fig. 2

The Mo spectra recorded by the HXS spectrometer by placing the detector near the focal circle and at distances up to 960 mm behind the focal circle. The spectrum recorded on the focal circle is indicated by 0 mm .

Fig. 3
Fig. 3

The Mo spectrum recorded by the HXS spectrometer with the detector 960 mm behind the focal circle. The Mo K α 1 , K α 2 , K β 1 , and K β 2 transitions are well resolved. The grayscale of the image has been adjusted to show the x-ray continuum.

Fig. 4
Fig. 4

Spectrometer geometry for a point x-ray source.

Fig. 5
Fig. 5

Spectrometer geometry for an extended x-ray source.

Fig. 6
Fig. 6

(a) Integrated efficiencies of the bent quartz (10-11) and Ge (220) crystals calculated using the xop computer program in units of 10 6 radians and (b) the ratios of the integrated efficiencies and the Bragg angles multiplied by 10 6 .

Fig. 7
Fig. 7

Comparison of the calculated (curves) and experimental (data symbols) results for spectra recorded by the HXS quartz crystal and the Mo microfocus source as functions of the distance beyond the focal circle: (a) distance of the Mo K β 1 spectral line from the axis of the spectrometer, (b) width of K β 1 in mm, (c) resolving power of K β 1 , and (d) total and partial line widths from various broadening mechanisms: 1—total width, 2—detector resolution, 3—source size, 4—crystal thickness, 5—natural width, and 6—crystal rocking curve width. The experimental uncertainties are comparable to the data symbol size.

Fig. 8
Fig. 8

(a) W spectra recorded without (upper curve) and with (lower curve) the resolution test pattern. The line pairs per mm ( LP / mm ) are indicated, and the W L γ and W K α spectral features and the Ba K absorption edge are identified. (b) Contrast after correcting for the transmittances of the resolution test pattern’s plastic case and the Pb bars. The transmittances of the 2.1 mm thick plastic (CH) case and the 50 μm Pb bars are also shown.

Fig. 9
Fig. 9

The modulation transfer function of the SR image plate derived from the spectra recorded using the resolution test pattern.

Fig. 10
Fig. 10

Spectra recorded by the Ge crystal and the W source, and by placing the image plate 60 mm behind the focal circle, indicating the resolution of the W K β 1 and K β 3 lines in the second order spectrum. The spectrum is relative intensity as derived from a column average in the vertical direction, perpendicular to the dispersion direction, over a number of rows in the spectral image.

Fig. 11
Fig. 11

Comparison of the calculated (curves) and experimental (data symbols) results for spectra recorded by the Ge crystal and the W source as functions of the distance beyond the focal circle: (a) distance of the W K β 1 spectral line from the axis of the spectrometer, (b) width of K β 1 in mm, (c) resolving power of K β 1 , and (d) total and partial line widths from various broadening mechanisms: 1—total width, 2—detector resolution, 3—source-size, 4—crystal thickness, 5—natural width, and 6—crystal rocking curve width. The square and triangular data symbols indicate the first and second order data, respectively. Additional curve labels are the diffraction order ( n = 1 and n = 2 ) and the source size (1.8 and 3.4 mm ).

Fig. 12
Fig. 12

Comparison of the calculated and measured W K β 1 results derived from spectra recorded by a quartz (10-11) crystal bent to 254 mm radius as functions of the distance beyond the focal circle. Three image plates were positioned at distances of 140, 700, and 1260 mm behind the focal circle, and the image plates were exposed simultaneously. (a) Distance of the W K β 1 spectral line from the axis of the spectrometer, (b) width of K β 1 in mm, (c) resolving power of K β 1 , and (d) total and partial line widths from various broadening mechanisms: 1—total width, 2—detector resolution, 3—source-size, 4—crystal thickness, and 5—natural width.

Tables (1)

Tables Icon

Table 1 Transition Energies in keV [23]

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

cos β sin ( 2 θ α β ) = sin ( θ α )
β = θ .
D s sin α = R sin ( θ α )
α = θ R / ( R + D s ) .
A = R D s / ( R + 2 D s ) ,
B = R ( R + D s ) / ( R + 2 D s ) ,
X FC = β R = θ R = n h c R / 2 d E .
E / δ E = n h c R / 2 d E δ X ,
X D = ( 2 θ α ) ( B + D ) = θ R ( 1 + D / B ) = ( n h c / 2 d E ) R ( 1 + D / B ) ,
E / δ E = ( n h c R / 2 d E δ X ) ( 1 + D / B ) ,
w = tan α ( D s D s ) = θ R ( D s D s ) / ( R + D s ) .
X D X D = ( 2 θ α ) ( B + D ) ( 2 θ α ) ( B + D ) = ( α α ) D .
X D X D = w D / ( R + D s ) .
β = θ ( θ 2 / 2 ) ( θ α ) = θ ( θ 3 / 2 ) D s / ( R + D s ) ,
δ X D = δ θ R ( 1 + D / B ) ,
δ θ = [ ( δ θ T ) 2 + ( δ θ N ) 2 + ( δ θ R ) 2 ] 1 / 2 .
W 2 = ( δ X ) 2 + [ w D / ( R + D s ) ] 2 + R 2 ( 1 + D / B ) 2 [ ( δ θ T ) 2 + ( δ θ N ) 2 + ( δ θ R ) 2 + ( ( θ 2 / 2 ) w R / ( R + D s ) ) 2 ] .
E / δ E = ( θ R / w D ) ( 1 + D / B ) ( R + D s ) ,
E / δ E = ( θ / w ) ( R + 2 D s ) ,

Metrics