Abstract

We propose a new approach to multiple-wavelength interferometry, targeted to high bandwidth absolute distance measurement, with nanometer accuracy over long distances. Two cw lasers are stabilized over a wide range of frequency intervals defined by an optical frequency comb, thus offering an unprecedented large choice of synthetic wavelengths. By applying a superheterodyne detection technique, we demonstrated experimentally an accuracy of 8nm over 800mm for target velocities up to 50mm/s.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512-5517(2000).
    [CrossRef]
  2. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29, 1153-1155 (2004).
    [CrossRef] [PubMed]
  3. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14, 5954-5960 (2006).
    [CrossRef] [PubMed]
  4. J. Jin, Y-J. Kim, Y. Kim, and S-W. Kim, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968-5974 (2006).
    [CrossRef] [PubMed]
  5. R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339-342 (1988).
    [CrossRef] [PubMed]
  6. G. Margheri, C. Giunti, S. Zatti, S. Manhart, and R. Maurer, “Double-wavelength superheterodyne interferometer for absolute ranging with submillimeter resolution: results obtained with a demonstration model by use of rough and reflective targets,” Appl. Opt. 36, 6211-6216 (1997).
    [CrossRef]
  7. R. Dändliker, Y. Salvadé, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29, 105-114 (1998).
    [CrossRef]
  8. Th. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A Pure Appl. Opt. 4, S364-S368 (2002).
    [CrossRef]
  9. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency comb referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31, 3101-3103 (2006).
    [CrossRef] [PubMed]
  10. R. Dändliker and Y. Salvadé, “Multiple-wavelength interferometry for absolute distance measurement,” in International Trends in Optics and Photonics--ICO IV, T. Asakura, ed., Springer Series in Optical Sciences (Springer, 1999), pp. 294-317.
  11. K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31, 315-316 (1994).
    [CrossRef]
  12. A. Arie, M. L. Bortz, M. M. Fejer, and R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization of the 1319 nm Nd:YAG laser,” Opt. Lett. 18,1757-1759, (1993).
    [CrossRef] [PubMed]
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105(1983).
    [CrossRef]
  14. R. Go, F.-L. Hong, A. Onae, Z.-Y. Bi, H. Matsumoto, andK. Nakagawa, “Frequency stabilization of a 1319-nm Nd:YAG laser by saturation spectroscopy of molecular iodine,” Opt. Lett. 29, 1733-1735 (2004).
    [CrossRef]
  15. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]

2006

2004

2002

Th. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A Pure Appl. Opt. 4, S364-S368 (2002).
[CrossRef]

2000

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512-5517(2000).
[CrossRef]

1998

R. Dändliker, Y. Salvadé, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29, 105-114 (1998).
[CrossRef]

1997

1994

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31, 315-316 (1994).
[CrossRef]

1993

1988

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105(1983).
[CrossRef]

Arie, A.

Bi, Z.-Y.

Birch, K. P.

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31, 315-316 (1994).
[CrossRef]

Bortz, M. L.

Byer, R. L.

Dändliker, R.

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency comb referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31, 3101-3103 (2006).
[CrossRef] [PubMed]

R. Dändliker, Y. Salvadé, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29, 105-114 (1998).
[CrossRef]

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339-342 (1988).
[CrossRef] [PubMed]

R. Dändliker and Y. Salvadé, “Multiple-wavelength interferometry for absolute distance measurement,” in International Trends in Optics and Photonics--ICO IV, T. Asakura, ed., Springer Series in Optical Sciences (Springer, 1999), pp. 294-317.

Downs, M. J.

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31, 315-316 (1994).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105(1983).
[CrossRef]

Fejer, M. M.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105(1983).
[CrossRef]

Giunti, C.

Go, R.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105(1983).
[CrossRef]

Hänsch, T. W.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Holzwarth, R.

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency comb referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31, 3101-3103 (2006).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Hong, F.-L.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105(1983).
[CrossRef]

Jin, J.

Joo, K.-N.

Kim, S.-W.

Kim, S-W.

Kim, Y.

Kim, Y-J.

Kinder, Th.

Th. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A Pure Appl. Opt. 4, S364-S368 (2002).
[CrossRef]

Knight, J. C.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105(1983).
[CrossRef]

Lévêque, S.

Manhart, S.

Margheri, G.

Matsumoto, H.

Maurer, R.

Minoshima, K.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105(1983).
[CrossRef]

Nakagawa, K.

Onae, A.

Prongué, D.

Russell, P. St. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Salewski, K.-D.

Th. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A Pure Appl. Opt. 4, S364-S368 (2002).
[CrossRef]

Salvadé, Y.

N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency comb referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31, 3101-3103 (2006).
[CrossRef] [PubMed]

R. Dändliker, Y. Salvadé, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29, 105-114 (1998).
[CrossRef]

R. Dändliker and Y. Salvadé, “Multiple-wavelength interferometry for absolute distance measurement,” in International Trends in Optics and Photonics--ICO IV, T. Asakura, ed., Springer Series in Optical Sciences (Springer, 1999), pp. 294-317.

Schuhler, N.

Thalmann, R.

Udem, Th.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Wadsworth, W. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105(1983).
[CrossRef]

Ye, J.

Zatti, S.

Zimmermann, E.

R. Dändliker, Y. Salvadé, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29, 105-114 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105(1983).
[CrossRef]

J. Opt.

R. Dändliker, Y. Salvadé, and E. Zimmermann, “Distance measurement by multiple-wavelength interferometry,” J. Opt. 29, 105-114 (1998).
[CrossRef]

J. Opt. A Pure Appl. Opt.

Th. Kinder and K.-D. Salewski, “Absolute distance interferometer with grating-stabilized tunable diode laser at 633 nm,” J. Opt. A Pure Appl. Opt. 4, S364-S368 (2002).
[CrossRef]

Metrologia

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31, 315-316 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Other

R. Dändliker and Y. Salvadé, “Multiple-wavelength interferometry for absolute distance measurement,” in International Trends in Optics and Photonics--ICO IV, T. Asakura, ed., Springer Series in Optical Sciences (Springer, 1999), pp. 294-317.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Concept of the multiple-wavelength source stabilized on an optical frequency comb. SHG, second-harmonic generation crystal; BDU, beat detection unit; PI, proportional integrator; AOM, acousto-optic modulator; I 2 , iodine absorption cell; WA1500, wavemeter Burleigh 1500; FC, fiber coupler; FSM, frequency shifter module composed of acousto-optic modulators and polarization maintaining fiber couplers.

Fig. 2
Fig. 2

Simplified sketch of the optical spectrum of the comb combined with the Nd:YAG and the ECLD. The repetition rate of the pulsed laser is f rep = 100 MHz . f b = 20 MHz is the reference frequency used by the phase-locked loops.

Fig. 3
Fig. 3

Interferometric setup. The reference interferometer is an Agilent laser interferometer (Agilent 5529B). (P)BS, (polarizing) beam splitter; CCs, corner cubes; LP, linear polarizer; D, dichroic plate.

Fig. 4
Fig. 4

Concept of the polarizing interferometer with reduced polarization crosstalk. (P)BS, (polarizing) beam splitter; CCs, corner cubes; BD, beam displacer (birefringent crystal).

Fig. 5
Fig. 5

Phase demodulator concept. BW, bandwidth.

Fig. 6
Fig. 6

Absolute measurements of optical path differences (OPD) versus results from Agilent interferometer, corrected by the air dispersion between 633 nm and 1.3 μm : (a) over 200 mm and (b) over 800 mm . The uncertainty ranges of the slope are given at a confidence level of 95% (corresponding to an uncertainty range of ± 2 σ ).

Fig. 7
Fig. 7

Standard deviations of the linear regression residuals for each distance estimation.

Tables (1)

Tables Icon

Table 1 Chain of Measurements Using a Variable Synthetic Wavelength Concept a

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ϕ 1 = 4 π n 1 L / λ 1 and ϕ 2 = 4 π n 2 L / λ 2 ,
Φ = 4 π λ 2 n 2 L 4 π λ 1 n 1 L = 4 π Λ c n 2 L ,
Λ c = c Δ v + [ ( n 2 n 1 ) / n 2 ] v 1 ,
Φ 1 = ( 4 π / c ) n 2 Δ ν L and Φ 2 = ( 4 π / c ) n 2 ( Δ ν + Δ ν 2 ) L ,
Δ Φ = Φ 2 Φ 1 = 4 π c n 2 Δ ν 2 L .
δ L = 2 δ ϕ c 4 π n 2 Δ ν 2 2 c 200 Δ ν 2 .
Δ Φ = Φ 2 Φ 1 = 4 π c ( n 2 Δ ν 2 L n 2 Δ ν · Δ L ) .
I ( t ) = A 1 cos ( 2 π f 1 t + ϕ 1 ) + A 2 cos ( 2 π f 2 t + ϕ 2 ) ,
n 2 Δ L = n 2 n 1 Δ ϕ 1 2 π λ 1 2 Δ ϕ 1 2 π λ 1 2 ,
n 2 L | estimation 1 = ( c 4 π Δ Φ + n 2 Δ ν Δ L ) Δ ν 2 .
N Λ / 2 = Round { n 2 L | estimation 1 Λ c / 2 Φ 4 π } .
n 2 L | estimation 2 = ( N Λ / 2 + Φ 4 π ) Λ c 2 .
n 2 L | estimation 3 = ( N λ / 2 + ϕ 1 4 π ) λ 1 2 .

Metrics