Abstract

Three-dimensional optical data storage is demonstrated in an initially homogenous volume by first recording a reflection grating in a holographic photopolymer. This causes the entire volume to be weakly reflecting to a confocal read/write head. Superposition of two or three such gratings with slightly different k-vectors creates a track and layer structure that specialized servo detection optics can use to lock the focus to these deeply-buried tracks. Writing is accomplished by locally modifying the reflectivity of the preexisting hologram. This modification can take the form of ablation, inelastic deformation via heating at the focus, or erasure via linear or two-photon continued polymerization in the previously unexposed fringes of the hologram. Storage by each method is demonstrated with up to eight data layers separated by as little as 12  microns.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical disk storage,” Proc. SPIE 2338, 247-250 (1994).
    [CrossRef]
  2. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141, (1996).
    [CrossRef]
  3. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487-489 (1999).
    [CrossRef]
  4. T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21, 1003-1005(1996).
    [CrossRef] [PubMed]
  5. J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive two photon point excitation,” Opt. Lett. 16, 1780-1783 (1991).
    [CrossRef] [PubMed]
  6. Y. Kawata, R. Juskaitis, T. Tanaka, T. Wilson, and S. Kawata, “Differential phase-contrast microscope with a split detector for the readout system of a multilayered optical memory,” Appl. Opt. 35, 2466-2470 (1996).
    [CrossRef] [PubMed]
  7. S. Orlic, S. Ulm, and H. J. U. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A: Pure Appl. Opt. 3, 72-81 (2001).
    [CrossRef]
  8. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Micro-holographic multi-layer optical disk data storage,” Appl. Opt. 44, 3197- 3207 (2005).
    [CrossRef] [PubMed]
  9. E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte twophoton 3D disk,” Opt. Express 15, 12264-12276 (2007).
    [CrossRef] [PubMed]
  10. Min Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
    [CrossRef]
  11. T. Weverka, K. Wagner, R. R. McLeod, and K. Wu, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. M. Pellegrino, eds. (Marcel Dekker, 1994).
  12. M. S. Wang and T. D. Milster, “Differential wax-wane focus servo,” Appl. Opt. 32, 4797-4807 (1993).
    [PubMed]
  13. L. Hesselink, “Three dimensional recording (3DR) technology,” in Optical Data Storage 2000, IEEE Conference Digest (IEEE, 2000), pp. 149-151.
    [CrossRef]
  14. L. Hesselink, R. R. McLeod, and S. L. Sochava, “Optical data storage by selective localized alteration of a format hologram in a holographic storage disk,” US Patent 6,614,741 (Sept. 2, 2003).
  15. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  16. K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross sections of common photoinitiators,” J. Photochemistry and Photobiology A: Chemistry 162, 497-502(2004).
    [CrossRef]

2007 (1)

2005 (1)

2004 (1)

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross sections of common photoinitiators,” J. Photochemistry and Photobiology A: Chemistry 162, 497-502(2004).
[CrossRef]

2001 (1)

S. Orlic, S. Ulm, and H. J. U. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A: Pure Appl. Opt. 3, 72-81 (2001).
[CrossRef]

1999 (1)

1996 (4)

1994 (1)

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical disk storage,” Proc. SPIE 2338, 247-250 (1994).
[CrossRef]

1991 (1)

Balu, M.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross sections of common photoinitiators,” J. Photochemistry and Photobiology A: Chemistry 162, 497-502(2004).
[CrossRef]

Belfield, K. D.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross sections of common photoinitiators,” J. Photochemistry and Photobiology A: Chemistry 162, 497-502(2004).
[CrossRef]

Callan, J. P.

Coblentz, K.

Daiber, A. J.

Dhal, P. K.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141, (1996).
[CrossRef]

Dhar, L.

Dvornikov, A.

Eichler, H. J. U.

S. Orlic, S. Ulm, and H. J. U. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A: Pure Appl. Opt. 3, 72-81 (2001).
[CrossRef]

Esener, S.

Finlay, R. J.

Glezer, E. N.

Gu, Min

Min Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
[CrossRef]

Hagan, D. J.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross sections of common photoinitiators,” J. Photochemistry and Photobiology A: Chemistry 162, 497-502(2004).
[CrossRef]

Hale, A.

Hales, J. M.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross sections of common photoinitiators,” J. Photochemistry and Photobiology A: Chemistry 162, 497-502(2004).
[CrossRef]

Her, T.-H.

Hesselink, L.

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Micro-holographic multi-layer optical disk data storage,” Appl. Opt. 44, 3197- 3207 (2005).
[CrossRef] [PubMed]

L. Hesselink, “Three dimensional recording (3DR) technology,” in Optical Data Storage 2000, IEEE Conference Digest (IEEE, 2000), pp. 149-151.
[CrossRef]

L. Hesselink, R. R. McLeod, and S. L. Sochava, “Optical data storage by selective localized alteration of a format hologram in a holographic storage disk,” US Patent 6,614,741 (Sept. 2, 2003).

Horner, M. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141, (1996).
[CrossRef]

Huang, L.

Imaino, W.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical disk storage,” Proc. SPIE 2338, 247-250 (1994).
[CrossRef]

Ingwall, R. T.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141, (1996).
[CrossRef]

Juskaitis, R.

Katz, H. E.

Kawata, S.

Kawata, Y.

Kolb, E. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141, (1996).
[CrossRef]

Li, H.-Y. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141, (1996).
[CrossRef]

Mazur, E.

McDonald, M. E.

McLeod, R. R.

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Micro-holographic multi-layer optical disk data storage,” Appl. Opt. 44, 3197- 3207 (2005).
[CrossRef] [PubMed]

L. Hesselink, R. R. McLeod, and S. L. Sochava, “Optical data storage by selective localized alteration of a format hologram in a holographic storage disk,” US Patent 6,614,741 (Sept. 2, 2003).

T. Weverka, K. Wagner, R. R. McLeod, and K. Wu, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. M. Pellegrino, eds. (Marcel Dekker, 1994).

Milosavljevic, M.

Milster, T. D.

Minns, R. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141, (1996).
[CrossRef]

Orlic, S.

S. Orlic, S. Ulm, and H. J. U. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A: Pure Appl. Opt. 3, 72-81 (2001).
[CrossRef]

Rentzepis, P.

Robertson, T. L.

Rosen, H. J.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical disk storage,” Proc. SPIE 2338, 247-250 (1994).
[CrossRef]

Rubin, K. A.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical disk storage,” Proc. SPIE 2338, 247-250 (1994).
[CrossRef]

Schafer, K. J.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross sections of common photoinitiators,” J. Photochemistry and Photobiology A: Chemistry 162, 497-502(2004).
[CrossRef]

Schild, H. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141, (1996).
[CrossRef]

Schilling, F. C.

Schilling, M. L.

Schnoes, M. G.

Slagle, T.

Sochava, S. L.

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Micro-holographic multi-layer optical disk data storage,” Appl. Opt. 44, 3197- 3207 (2005).
[CrossRef] [PubMed]

L. Hesselink, R. R. McLeod, and S. L. Sochava, “Optical data storage by selective localized alteration of a format hologram in a holographic storage disk,” US Patent 6,614,741 (Sept. 2, 2003).

Strand, T. C.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical disk storage,” Proc. SPIE 2338, 247-250 (1994).
[CrossRef]

Strickler, J. H.

Tanaka, T.

Tang, W. W.

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical disk storage,” Proc. SPIE 2338, 247-250 (1994).
[CrossRef]

Ulm, S.

S. Orlic, S. Ulm, and H. J. U. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A: Pure Appl. Opt. 3, 72-81 (2001).
[CrossRef]

Van Stryland, E. W.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross sections of common photoinitiators,” J. Photochemistry and Photobiology A: Chemistry 162, 497-502(2004).
[CrossRef]

Wagner, K.

T. Weverka, K. Wagner, R. R. McLeod, and K. Wu, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. M. Pellegrino, eds. (Marcel Dekker, 1994).

Waldman, D. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141, (1996).
[CrossRef]

Walker, E.

Wang, M. S.

Webb, W. W.

Weverka, T.

T. Weverka, K. Wagner, R. R. McLeod, and K. Wu, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. M. Pellegrino, eds. (Marcel Dekker, 1994).

Wilson, T.

Wu, K.

T. Weverka, K. Wagner, R. R. McLeod, and K. Wu, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. M. Pellegrino, eds. (Marcel Dekker, 1994).

Appl. Opt. (3)

J. Opt. A: Pure Appl. Opt. (1)

S. Orlic, S. Ulm, and H. J. U. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A: Pure Appl. Opt. 3, 72-81 (2001).
[CrossRef]

J. Photochemistry and Photobiology A: Chemistry (1)

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, “Two-photon absorption cross sections of common photoinitiators,” J. Photochemistry and Photobiology A: Chemistry 162, 497-502(2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (2)

K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical disk storage,” Proc. SPIE 2338, 247-250 (1994).
[CrossRef]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141, (1996).
[CrossRef]

Other (4)

Min Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
[CrossRef]

T. Weverka, K. Wagner, R. R. McLeod, and K. Wu, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. M. Pellegrino, eds. (Marcel Dekker, 1994).

L. Hesselink, “Three dimensional recording (3DR) technology,” in Optical Data Storage 2000, IEEE Conference Digest (IEEE, 2000), pp. 149-151.
[CrossRef]

L. Hesselink, R. R. McLeod, and S. L. Sochava, “Optical data storage by selective localized alteration of a format hologram in a holographic storage disk,” US Patent 6,614,741 (Sept. 2, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

System architecture. The read/write head (dashed box) tracks the factory-written reflective servo pattern via feedback from confocal servo-tracking optics. Data is written by erasing or perturbing the reflective Bragg grating in micron volumes and read by detection of the change in reflectivity at the focus.

Fig. 2
Fig. 2

Formatting via interference of two plane waves at λ F (left) and reading via diffraction of a focused beam at λ R (right) in both real (top) and Fourier (bottom) spaces. The two plane waves (top left) are tilted by an angle θ (bottom left) in order to record a grating with pitch Λ that, after shrinkage s, is intentionally larger than λ R / 2 by a factor of 1 + δ . This detuning determines which angular cone of the incident beam is Bragg-matched, while the thickness of the material L controls the angular width of the diffraction (upper right).

Fig. 3
Fig. 3

Possible holographic servo patterns including (a) uniform reflection grating, (b) layer patterning in depth, (c) track patterning in radius and (d) simultaneous layer and track patterning. The arrows represent the incoherent grating vectors needed to create each pattern.

Fig. 4
Fig. 4

Creation of the layer and radial holographic tracking pattern. As shown in (a), three pairs of mutually incoherent beams record three reflection gratings in a narrow radial spoke. The k-space representation (b) shows how the six green plane waves create the three desired grating vectors, tuned for readout at a longer wavelength.

Fig. 5
Fig. 5

Optical ray trace of the holographic servo writer. The acousto-optic (AO) deflector creates three mutually incoherent beams which are expanded in the plane of the drawing and split by the beam splitter (BS) into three pairs stacked in depth. Pickoff mirrors direct these to tilted plates, which bring the beams back to the same plane and titled cylindrical lenses, focussing the interference pattern into a thin sheet normal to the along-track (S) direction. The disk to be exposed is rotated through this interference pattern by a precision spindle.

Fig. 6
Fig. 6

RZ confocal scanning reflection measurement made by the precision drive of a 13 layer formatted disk. The 180 nm fringes that provide the reflection efficiency of each track are not visible. The pattern is sampled at 50 nm radially and 300 nm in depth.

Fig. 7
Fig. 7

Precision of the radial track position of the tracks shown in Fig. 6. The plot shows the measured deviation of the track center from its nominal position as a function of the radius, indicating a maximum track squeeze of 200 nm .

Fig. 8
Fig. 8

Structure of the combined radial and depth confocal servo detection optics. The beam splitter divides the focused beam which is sent through two pinholes placed before and after the focus for a collimated input. Split photo-diodes detect the radial track ing error. The data, radial error, and depth error signals are computed from A+B+C+D , (B+D) (A+C) , and (A+B) (C+D) , respectively.

Fig. 9
Fig. 9

Depth servo signal measured for a layer-only format grating. The top plot shows the signals detected from the two displaced confocal filters while the bottom is the electronic difference, indicating a layer peak at every negative-slope zero crossing. The dashed line indicates the depth of a representative layer crossing.

Fig. 10
Fig. 10

Results of different write mechanisms showing detected signal versus along-track distance (S). All horizontal scales save (a) are the same for ease of comparison of bit shapes. The graphics on the right indicate the writing mechanisms which are ablation, inelastic deformation, and one- or two-photon continued polymerization from top to bottom. Further details for each plot are given in Table 1.

Fig. 11
Fig. 11

Elastic deformation via heating with a 25 μs pump pulse from a Q-switched DPSS laser of a uniform format grating with detuning δ < 0 . As the grating expands locally, the reflected signal traces out the Bragg selectivity curve.

Fig. 12
Fig. 12

Full-width to half-maximum transverse bit diameter (upper curve) written by two-photon continued polymerization and reflectivity of the uniform format grating (lower curve) versus grating detuning. The sketch of the CTF on the right qualitatively explains the observed behaviors.

Fig. 13
Fig. 13

Storage via two-photon continued polymerization initiated by a DFB laser diode in a 100 μm thick photopolymer formatted with eight layers.

Fig. 14
Fig. 14

Storage via two-photon continued polymerization initiated by a 532 nm DPSS laser in a uniform format grating. The 51 (R) × 51 (S) × 6 (Z) bits were separated by 2 (R) × 2 (S) × 20 (Z) μm . Note the three broad horizontal bands and finer stripes at 45 ° across the upper left image that indicate the presence of weak noise gratings.

Tables (1)

Tables Icon

Table 1 Summary of Experimental Conditions for the Results in Figs. 10, 11, 12, 13, 14

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 2 π n R λ R = ( 1 + δ ) 2 π Λ = ( 1 + δ ) ( 1 + s ) 2 2 π n F λ F cos θ ,
π δ Z = 2 π Λ ( 2 π Λ ) 2 ( 2 π δ R ) 2 .
D π 10 NA 4 λ R 3 L n .

Metrics