Abstract

We propose a direct method of partitioning the particulate spectral scattering coefficient of the marine hydrosol based on the concurrent determination of the concentrations of particulate mineral and organic matter (the total mass of optically active scattering material exclusive of water) with the particulate spectral scattering coefficient. For this we derive a Model II multiple linear regression model. The multiple linear regression of the particulate spectral scattering coefficient against the independent variables, the concentrations of particulate inorganic matter and particulate organic matter, yields their mass- specific spectral scattering cross sections. The mass-specific spectral scattering cross section is simply the particle scattering cross section normalized to the particle mass, a fundamental optical efficiency parameter for the attenuation of electromagnetic radiation [Absorption and Scattering of Light by Small Particles, (Wiley-Interscience, 1983), pp. 80–81, 289]. It is possible to infer the optical properties of the suspended matter from the mass-specific spectral scattering cross sections. From these cross sections we partition the particulate spectral scattering coefficient into its major components.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Gould Jr., R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17, 328-341 (2001).
  2. M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43, 2156-2162 (2004).
    [CrossRef] [PubMed]
  3. J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333-13344 (1995).
    [CrossRef]
  4. R. W. Gould Jr. and R. A. Arnone, “Three-dimensional modeling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19, 2141-2159 (1998).
    [CrossRef]
  5. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).
    [CrossRef]
  6. R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48, 2377-2391 (2004).
    [CrossRef]
  7. R. E. Green and H. M. Sosik, “Analysis of apparent properties and ocean color models using measurement of seawater constituents in New England continental shelf surface waters,” J. Geophys. Res. 109, C03026, doi:10.1029/2003JC001977 (2004).
    [CrossRef]
  8. D. Antoine, A. Morel, and H. Claustre, “Some peculiarities of case 1 waters optical properties in the northwestern Mediterranean Sea,” presented at the ASLO/TOS Ocean Research Conference, Honolulu, Hawaii, USA, 15-20 February 2004.
  9. H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
    [CrossRef]
  10. C. Moulin, C. E. Lambert, F. Dulac, and U. Dyan, “Control of atmospheric export of dust from North Africa by the North Atlantic oscillation,” Nature 387, 691-694 (1997).
    [CrossRef]
  11. W. M. Balch, P. M. Holligan, S. G. Ackleson, and K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643(1991).
    [CrossRef]
  12. R. W. Gould Jr., R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377-2383 (1999).
    [CrossRef]
  13. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847-858 (1998).
    [CrossRef]
  14. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929-2945(2001).
    [CrossRef]
  15. C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373-383 (2005).
    [CrossRef]
  16. C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Rem. Sens. 24, 3791-3806 (2003).
    [CrossRef]
  17. A. Cunningham, A. Dudek, and D. Mckee, “Comparison of satellite and surface measurements of water leaving radiance and seawater composition in an optically variable shelf sea,” presented at the Eighth International Conference on Remote Sensing for Marine and Coastal Environments, Halifax, Nova Scotia, Canada, 17-19 May 2005.
  18. R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, and D. V. Pozdnayakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).
  19. R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: optical implications,” J. Geophys. Res. Oceans 109, C05005, doi:10.1029/2003JC002098 (2004).
    [CrossRef]
  20. T. R. Keen and R. H. Stavn, “Developing a capability to forecast coastal ocean optics: minerogenic scattering,” in Proc. 6th International Conference on Estuarine and Coastal Modeling, M. Spaulding and A. Blumberg, eds. (ASCE Press, 2000), pp. 178-193.
  21. M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756-767 (2004).
    [CrossRef]
  22. J. T. O. Kirk, “Dependence of relationships between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350-356 (1984).
    [CrossRef]
  23. D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar., Coast. Shelf Sci. 67, 219-230 (2006).
    [CrossRef]
  24. S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43, 3489-3503(2004).
    [CrossRef] [PubMed]
  25. W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).
  26. S. R. Pearlman, H. S. Costa, R. A. Jung, J. J. McKeown, and H. E. Pearson, “Solids,” in Standard Methods for the Examination of Water and Wastewater, A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, eds. (American Public Health Association, 1995), Section 209, pp. 2-53-2-64.
  27. D. Stramski, S. B. Woźniak, and P. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749-755 (2004).
    [CrossRef]
  28. H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).
    [CrossRef]
  29. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  30. E. J. McCartney, Optics of the Atmosphere. Scattering by Molecules and Particles (Wiley-Interscience, 1976).
  31. A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571-580 (1986).
    [CrossRef] [PubMed]
  32. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223 (1996), Table VIII, p. 2341.
    [CrossRef]
  33. M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744-754 (1996).
    [CrossRef]
  34. C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77-98 (1981).
  35. K. Mahmoud, “Lognormal size distribution of particulate matter,” J. Sediment. Petrol. 43, 1161-1166 (1973).
  36. D. Risovic, “Two component model of the sea particle size distribution,” Deep-Sea Research, Part I 40, 1459-1473(1993).
    [CrossRef]
  37. D. Risovic, “Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater,” Appl. Opt. 41, 7092-7101 (2002).
    [CrossRef] [PubMed]
  38. F. Peng and S. W. Effler, “Suspended minerogenic particles in a reservoir: light-scattering features from individual particle analysis,” Limnol. Oceanogr. 52, 204-216 (2007).
    [CrossRef]
  39. J. B. Austin, “Methods of representing distribution of particle size,” Industrial and Engineering Chemistry, Analytical Edition 11, 334-339 (1939).
    [CrossRef]
  40. A. Morel and Y.-H. Ahn, “Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48, 145-175 (1990).
    [CrossRef]
  41. W. M. Balch, D. T. Drapeau, T. L. Cucci, and R. D. Vaillancourt, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
    [CrossRef]
  42. M. Defoin-Platel and M. Chami, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. Oceans 112, C03004, doi:10.1029/2006JC003847 (2007).
    [CrossRef]
  43. R. A. Feely, J. H. Trefry, and B. Monger, “Chapter 1. Particle sampling and preservation,” in Marine Particles: Analysis and Characterization, D.C.Heard and D.W.Spencer, eds. (American Geophysical Union, 1991), pp. 5-22.
    [CrossRef]
  44. A.-L. Barillé-Boyer, L. Barillé, H. Massé, D. Razet, and M. Héral, “Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems,” Estuar., Coast. Shelf Sci. 58, 147-153 (2003).
    [CrossRef]
  45. L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905-916 (1980).
  46. A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67-72 (1984).
  47. C. C. Trees, “Analytical analysis of the effect of dissolved solids on suspended solids determination,” J. Water Pollut. Control Fed. 50, 2370-2373 (1978).
  48. R. W. Gould Jr., R. H. Stavn, M. S. Twardowski, and G. M. Lamela, “Partitioning optical properties into organic and inorganic components from ocean color imagery,” in Ocean Optics XVI, S.Ackleson and C.Trees, eds. (Office of Naval Research CDROM, 2002).
  49. N. Jerlov, Marine Optics (Elsevier, 1975).
  50. O. J. Dunn and V. A. Clark, Applied Statistics: Analysis of Variance and Regression (John Wiley, 1974).
  51. L. M. Mezei, Practical Spreadsheet Statistics & Curve Fitting for Scientists and Engineers (Prentice-Hall, 1990).
  52. B. F. J. Manly, Multivariate Statistical Methods: A Primer (Chapman & Hall, 2005).
  53. W. E. Ricker, “A note concerning Professor Jolicoeur's comments,” J. Fish. Res. Brd. Can. 32, 1494-1498 (1975).
    [CrossRef]
  54. E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65, 13-16 (1981).
    [CrossRef]
  55. R. R. Sokal and F. J. Rohlf, Biometry. The Principles and Practice of Statistics in Biological Research (W. H. Freeman, 1969).
  56. E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197-8203 (1984).
    [CrossRef]
  57. D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418-2433 (2007).
    [CrossRef]
  58. W. C. Isphording, F. D. Imsand, and R. B. Jackson, “Fluvial sediment characteristics of the Mobile River Delta,” Trans. Gulf Coast Assoc. Geol. Soc. XLVI, 397-408 (1985).
  59. M. Sydor and R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905-6912 (1997).
    [CrossRef]
  60. H. C. van de Hulst, Light Scattering by Small Molecules (Dover, 1981).
  61. D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538-549 (1997).
    [CrossRef]
  62. C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550-560(1997).
    [CrossRef]
  63. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
    [CrossRef]

2007 (3)

F. Peng and S. W. Effler, “Suspended minerogenic particles in a reservoir: light-scattering features from individual particle analysis,” Limnol. Oceanogr. 52, 204-216 (2007).
[CrossRef]

M. Defoin-Platel and M. Chami, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. Oceans 112, C03004, doi:10.1029/2006JC003847 (2007).
[CrossRef]

D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418-2433 (2007).
[CrossRef]

2006 (1)

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar., Coast. Shelf Sci. 67, 219-230 (2006).
[CrossRef]

2005 (1)

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373-383 (2005).
[CrossRef]

2004 (8)

R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: optical implications,” J. Geophys. Res. Oceans 109, C05005, doi:10.1029/2003JC002098 (2004).
[CrossRef]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756-767 (2004).
[CrossRef]

M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43, 2156-2162 (2004).
[CrossRef] [PubMed]

R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48, 2377-2391 (2004).
[CrossRef]

R. E. Green and H. M. Sosik, “Analysis of apparent properties and ocean color models using measurement of seawater constituents in New England continental shelf surface waters,” J. Geophys. Res. 109, C03026, doi:10.1029/2003JC001977 (2004).
[CrossRef]

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43, 3489-3503(2004).
[CrossRef] [PubMed]

D. Stramski, S. B. Woźniak, and P. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749-755 (2004).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

2003 (3)

A.-L. Barillé-Boyer, L. Barillé, H. Massé, D. Razet, and M. Héral, “Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems,” Estuar., Coast. Shelf Sci. 58, 147-153 (2003).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Rem. Sens. 24, 3791-3806 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

2002 (2)

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

D. Risovic, “Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater,” Appl. Opt. 41, 7092-7101 (2002).
[CrossRef] [PubMed]

2001 (3)

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).
[CrossRef]

R. W. Gould Jr., R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17, 328-341 (2001).

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929-2945(2001).
[CrossRef]

1999 (2)

R. W. Gould Jr., R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377-2383 (1999).
[CrossRef]

W. M. Balch, D. T. Drapeau, T. L. Cucci, and R. D. Vaillancourt, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

1998 (2)

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847-858 (1998).
[CrossRef]

R. W. Gould Jr. and R. A. Arnone, “Three-dimensional modeling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19, 2141-2159 (1998).
[CrossRef]

1997 (4)

C. Moulin, C. E. Lambert, F. Dulac, and U. Dyan, “Control of atmospheric export of dust from North Africa by the North Atlantic oscillation,” Nature 387, 691-694 (1997).
[CrossRef]

M. Sydor and R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905-6912 (1997).
[CrossRef]

D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538-549 (1997).
[CrossRef]

C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550-560(1997).
[CrossRef]

1996 (2)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223 (1996), Table VIII, p. 2341.
[CrossRef]

M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744-754 (1996).
[CrossRef]

1995 (1)

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333-13344 (1995).
[CrossRef]

1993 (1)

D. Risovic, “Two component model of the sea particle size distribution,” Deep-Sea Research, Part I 40, 1459-1473(1993).
[CrossRef]

1991 (1)

W. M. Balch, P. M. Holligan, S. G. Ackleson, and K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643(1991).
[CrossRef]

1990 (1)

A. Morel and Y.-H. Ahn, “Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48, 145-175 (1990).
[CrossRef]

1986 (1)

1985 (1)

W. C. Isphording, F. D. Imsand, and R. B. Jackson, “Fluvial sediment characteristics of the Mobile River Delta,” Trans. Gulf Coast Assoc. Geol. Soc. XLVI, 397-408 (1985).

1984 (3)

A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67-72 (1984).

E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197-8203 (1984).
[CrossRef]

J. T. O. Kirk, “Dependence of relationships between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350-356 (1984).
[CrossRef]

1981 (2)

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77-98 (1981).

E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65, 13-16 (1981).
[CrossRef]

1980 (1)

L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905-916 (1980).

1978 (1)

C. C. Trees, “Analytical analysis of the effect of dissolved solids on suspended solids determination,” J. Water Pollut. Control Fed. 50, 2370-2373 (1978).

1975 (1)

W. E. Ricker, “A note concerning Professor Jolicoeur's comments,” J. Fish. Res. Brd. Can. 32, 1494-1498 (1975).
[CrossRef]

1973 (1)

K. Mahmoud, “Lognormal size distribution of particulate matter,” J. Sediment. Petrol. 43, 1161-1166 (1973).

1939 (1)

J. B. Austin, “Methods of representing distribution of particle size,” Industrial and Engineering Chemistry, Analytical Edition 11, 334-339 (1939).
[CrossRef]

Aas, E.

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223 (1996), Table VIII, p. 2341.
[CrossRef]

Ackleson, S. G.

W. M. Balch, P. M. Holligan, S. G. Ackleson, and K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643(1991).
[CrossRef]

Ahn, Y.-H.

A. Morel and Y.-H. Ahn, “Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48, 145-175 (1990).
[CrossRef]

Antoine, D.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

D. Antoine, A. Morel, and H. Claustre, “Some peculiarities of case 1 waters optical properties in the northwestern Mediterranean Sea,” presented at the ASLO/TOS Ocean Research Conference, Honolulu, Hawaii, USA, 15-20 February 2004.

Archie, J. W.

E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65, 13-16 (1981).
[CrossRef]

Arnone, R. A.

M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43, 2156-2162 (2004).
[CrossRef] [PubMed]

R. W. Gould Jr., R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17, 328-341 (2001).

R. W. Gould Jr., R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377-2383 (1999).
[CrossRef]

R. W. Gould Jr. and R. A. Arnone, “Three-dimensional modeling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19, 2141-2159 (1998).
[CrossRef]

M. Sydor and R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905-6912 (1997).
[CrossRef]

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

Austin, J. B.

J. B. Austin, “Methods of representing distribution of particle size,” Industrial and Engineering Chemistry, Analytical Edition 11, 334-339 (1939).
[CrossRef]

Babin, M.

D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418-2433 (2007).
[CrossRef]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756-767 (2004).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

Baker, E. T.

E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197-8203 (1984).
[CrossRef]

Balch, W. M.

W. M. Balch, D. T. Drapeau, T. L. Cucci, and R. D. Vaillancourt, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

W. M. Balch, P. M. Holligan, S. G. Ackleson, and K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643(1991).
[CrossRef]

Barillé, L.

A.-L. Barillé-Boyer, L. Barillé, H. Massé, D. Razet, and M. Héral, “Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems,” Estuar., Coast. Shelf Sci. 58, 147-153 (2003).
[CrossRef]

Barillé-Boyer, A.-L.

A.-L. Barillé-Boyer, L. Barillé, H. Massé, D. Razet, and M. Héral, “Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems,” Estuar., Coast. Shelf Sci. 58, 147-153 (2003).
[CrossRef]

Binding, C. E.

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar., Coast. Shelf Sci. 67, 219-230 (2006).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373-383 (2005).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Rem. Sens. 24, 3791-3806 (2003).
[CrossRef]

Bogucki, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

Boss, E.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Bowers, D. G.

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar., Coast. Shelf Sci. 67, 219-230 (2006).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373-383 (2005).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Rem. Sens. 24, 3791-3806 (2003).
[CrossRef]

Bricaud, A.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929-2945(2001).
[CrossRef]

A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571-580 (1986).
[CrossRef] [PubMed]

Brun-Cottan, J. C.

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77-98 (1981).

Bukata, R. P.

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, and D. V. Pozdnayakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Chami, M.

M. Defoin-Platel and M. Chami, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. Oceans 112, C03004, doi:10.1029/2006JC003847 (2007).
[CrossRef]

Chesselet, R.

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77-98 (1981).

Clark, V. A.

O. J. Dunn and V. A. Clark, Applied Statistics: Analysis of Variance and Regression (John Wiley, 1974).

Claustre, H.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

D. Antoine, A. Morel, and H. Claustre, “Some peculiarities of case 1 waters optical properties in the northwestern Mediterranean Sea,” presented at the ASLO/TOS Ocean Research Conference, Honolulu, Hawaii, USA, 15-20 February 2004.

Cleveland, J. S.

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333-13344 (1995).
[CrossRef]

Costa, H. S.

S. R. Pearlman, H. S. Costa, R. A. Jung, J. J. McKeown, and H. E. Pearson, “Solids,” in Standard Methods for the Examination of Water and Wastewater, A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, eds. (American Public Health Association, 1995), Section 209, pp. 2-53-2-64.

Cucci, T. L.

W. M. Balch, D. T. Drapeau, T. L. Cucci, and R. D. Vaillancourt, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

Cunningham, A.

A. Cunningham, A. Dudek, and D. Mckee, “Comparison of satellite and surface measurements of water leaving radiance and seawater composition in an optically variable shelf sea,” presented at the Eighth International Conference on Remote Sensing for Marine and Coastal Environments, Halifax, Nova Scotia, Canada, 17-19 May 2005.

Davis, C. O.

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

Defoin-Platel, M.

M. Defoin-Platel and M. Chami, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. Oceans 112, C03004, doi:10.1029/2006JC003847 (2007).
[CrossRef]

Doyle, L. J.

L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905-916 (1980).

Drapeau, D. T.

W. M. Balch, D. T. Drapeau, T. L. Cucci, and R. D. Vaillancourt, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

Du, T.

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).
[CrossRef]

Dudek, A.

A. Cunningham, A. Dudek, and D. Mckee, “Comparison of satellite and surface measurements of water leaving radiance and seawater composition in an optically variable shelf sea,” presented at the Eighth International Conference on Remote Sensing for Marine and Coastal Environments, Halifax, Nova Scotia, Canada, 17-19 May 2005.

Dulac, F.

C. Moulin, C. E. Lambert, F. Dulac, and U. Dyan, “Control of atmospheric export of dust from North Africa by the North Atlantic oscillation,” Nature 387, 691-694 (1997).
[CrossRef]

Dunn, O. J.

O. J. Dunn and V. A. Clark, Applied Statistics: Analysis of Variance and Regression (John Wiley, 1974).

Dyan, U.

C. Moulin, C. E. Lambert, F. Dulac, and U. Dyan, “Control of atmospheric export of dust from North Africa by the North Atlantic oscillation,” Nature 387, 691-694 (1997).
[CrossRef]

Effler, S. W.

F. Peng and S. W. Effler, “Suspended minerogenic particles in a reservoir: light-scattering features from individual particle analysis,” Limnol. Oceanogr. 52, 204-216 (2007).
[CrossRef]

Feely, R. A.

R. A. Feely, J. H. Trefry, and B. Monger, “Chapter 1. Particle sampling and preservation,” in Marine Particles: Analysis and Characterization, D.C.Heard and D.W.Spencer, eds. (American Geophysical Union, 1991), pp. 5-22.
[CrossRef]

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

Flatau, P.

D. Stramski, S. B. Woźniak, and P. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749-755 (2004).
[CrossRef]

Fournier, G.

M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744-754 (1996).
[CrossRef]

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

Goode, W.

M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43, 2156-2162 (2004).
[CrossRef] [PubMed]

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

Gordon, H. R.

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).
[CrossRef]

Gould, R. W.

M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43, 2156-2162 (2004).
[CrossRef] [PubMed]

R. W. Gould Jr., R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17, 328-341 (2001).

R. W. Gould Jr., R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377-2383 (1999).
[CrossRef]

R. W. Gould Jr. and R. A. Arnone, “Three-dimensional modeling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19, 2141-2159 (1998).
[CrossRef]

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

R. W. Gould Jr., R. H. Stavn, M. S. Twardowski, and G. M. Lamela, “Partitioning optical properties into organic and inorganic components from ocean color imagery,” in Ocean Optics XVI, S.Ackleson and C.Trees, eds. (Office of Naval Research CDROM, 2002).

Green, R. E.

R. E. Green and H. M. Sosik, “Analysis of apparent properties and ocean color models using measurement of seawater constituents in New England continental shelf surface waters,” J. Geophys. Res. 109, C03026, doi:10.1029/2003JC001977 (2004).
[CrossRef]

R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48, 2377-2391 (2004).
[CrossRef]

Haltrin, V. I.

Héral, M.

A.-L. Barillé-Boyer, L. Barillé, H. Massé, D. Razet, and M. Héral, “Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems,” Estuar., Coast. Shelf Sci. 58, 147-153 (2003).
[CrossRef]

Holligan, P. M.

W. M. Balch, P. M. Holligan, S. G. Ackleson, and K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643(1991).
[CrossRef]

Hooker, S. B.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

Imsand, F. D.

W. C. Isphording, F. D. Imsand, and R. B. Jackson, “Fluvial sediment characteristics of the Mobile River Delta,” Trans. Gulf Coast Assoc. Geol. Soc. XLVI, 397-408 (1985).

Isphording, W. C.

W. C. Isphording, F. D. Imsand, and R. B. Jackson, “Fluvial sediment characteristics of the Mobile River Delta,” Trans. Gulf Coast Assoc. Geol. Soc. XLVI, 397-408 (1985).

Jackson, R. B.

W. C. Isphording, F. D. Imsand, and R. B. Jackson, “Fluvial sediment characteristics of the Mobile River Delta,” Trans. Gulf Coast Assoc. Geol. Soc. XLVI, 397-408 (1985).

Jehanno, C.

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77-98 (1981).

Jerlov, N.

N. Jerlov, Marine Optics (Elsevier, 1975).

Jerome, J. H.

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, and D. V. Pozdnayakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Johnson, A. G.

A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67-72 (1984).

Jonasz, M.

M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744-754 (1996).
[CrossRef]

Jung, R. A.

S. R. Pearlman, H. S. Costa, R. A. Jung, J. J. McKeown, and H. E. Pearson, “Solids,” in Standard Methods for the Examination of Water and Wastewater, A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, eds. (American Public Health Association, 1995), Section 209, pp. 2-53-2-64.

Keen, T. R.

R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: optical implications,” J. Geophys. Res. Oceans 109, C05005, doi:10.1029/2003JC002098 (2004).
[CrossRef]

T. R. Keen and R. H. Stavn, “Developing a capability to forecast coastal ocean optics: minerogenic scattering,” in Proc. 6th International Conference on Estuarine and Coastal Modeling, M. Spaulding and A. Blumberg, eds. (ASCE Press, 2000), pp. 178-193.

Kelley, J. T.

A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67-72 (1984).

Kirk, J. T. O.

J. T. O. Kirk, “Dependence of relationships between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350-356 (1984).
[CrossRef]

Kondratyev, K. Ya.

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, and D. V. Pozdnayakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Ladner, S.

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

Lambert, C. E.

C. Moulin, C. E. Lambert, F. Dulac, and U. Dyan, “Control of atmospheric export of dust from North Africa by the North Atlantic oscillation,” Nature 387, 691-694 (1997).
[CrossRef]

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77-98 (1981).

Lamela, G. M.

R. W. Gould Jr., R. H. Stavn, M. S. Twardowski, and G. M. Lamela, “Partitioning optical properties into organic and inorganic components from ocean color imagery,” in Ocean Optics XVI, S.Ackleson and C.Trees, eds. (Office of Naval Research CDROM, 2002).

Lamella, G.

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

Lavelle, J. W.

E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197-8203 (1984).
[CrossRef]

Laws, E. A.

E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65, 13-16 (1981).
[CrossRef]

Leblanc, K.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

Loisel, H.

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847-858 (1998).
[CrossRef]

Mahmoud, K.

K. Mahmoud, “Lognormal size distribution of particulate matter,” J. Sediment. Petrol. 43, 1161-1166 (1973).

Manly, B. F. J.

B. F. J. Manly, Multivariate Statistical Methods: A Primer (Chapman & Hall, 2005).

Maritorena, S.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

Martinolich, P. M.

Massé, H.

A.-L. Barillé-Boyer, L. Barillé, H. Massé, D. Razet, and M. Héral, “Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems,” Estuar., Coast. Shelf Sci. 58, 147-153 (2003).
[CrossRef]

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere. Scattering by Molecules and Particles (Wiley-Interscience, 1976).

Mckee, D.

A. Cunningham, A. Dudek, and D. Mckee, “Comparison of satellite and surface measurements of water leaving radiance and seawater composition in an optically variable shelf sea,” presented at the Eighth International Conference on Remote Sensing for Marine and Coastal Environments, Halifax, Nova Scotia, Canada, 17-19 May 2005.

McKeown, J. J.

S. R. Pearlman, H. S. Costa, R. A. Jung, J. J. McKeown, and H. E. Pearson, “Solids,” in Standard Methods for the Examination of Water and Wastewater, A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, eds. (American Public Health Association, 1995), Section 209, pp. 2-53-2-64.

Mezei, L. M.

L. M. Mezei, Practical Spreadsheet Statistics & Curve Fitting for Scientists and Engineers (Prentice-Hall, 1990).

Mitchelson-Jacob, E. G.

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373-383 (2005).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Rem. Sens. 24, 3791-3806 (2003).
[CrossRef]

Mobley, C. D.

C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550-560(1997).
[CrossRef]

D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538-549 (1997).
[CrossRef]

Monger, B.

R. A. Feely, J. H. Trefry, and B. Monger, “Chapter 1. Particle sampling and preservation,” in Marine Particles: Analysis and Characterization, D.C.Heard and D.W.Spencer, eds. (American Geophysical Union, 1991), pp. 5-22.
[CrossRef]

Morel, A.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929-2945(2001).
[CrossRef]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847-858 (1998).
[CrossRef]

A. Morel and Y.-H. Ahn, “Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48, 145-175 (1990).
[CrossRef]

A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571-580 (1986).
[CrossRef] [PubMed]

D. Antoine, A. Morel, and H. Claustre, “Some peculiarities of case 1 waters optical properties in the northwestern Mediterranean Sea,” presented at the ASLO/TOS Ocean Research Conference, Honolulu, Hawaii, USA, 15-20 February 2004.

Moulin, C.

C. Moulin, C. E. Lambert, F. Dulac, and U. Dyan, “Control of atmospheric export of dust from North Africa by the North Atlantic oscillation,” Nature 387, 691-694 (1997).
[CrossRef]

Olson, R. J.

R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48, 2377-2391 (2004).
[CrossRef]

Oubelkheir, K.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

Pearlman, S. R.

S. R. Pearlman, H. S. Costa, R. A. Jung, J. J. McKeown, and H. E. Pearson, “Solids,” in Standard Methods for the Examination of Water and Wastewater, A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, eds. (American Public Health Association, 1995), Section 209, pp. 2-53-2-64.

Pearson, H. E.

S. R. Pearlman, H. S. Costa, R. A. Jung, J. J. McKeown, and H. E. Pearson, “Solids,” in Standard Methods for the Examination of Water and Wastewater, A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, eds. (American Public Health Association, 1995), Section 209, pp. 2-53-2-64.

Peng, F.

F. Peng and S. W. Effler, “Suspended minerogenic particles in a reservoir: light-scattering features from individual particle analysis,” Limnol. Oceanogr. 52, 204-216 (2007).
[CrossRef]

Pozdnayakov, D. V.

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, and D. V. Pozdnayakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Quéguiner, B.

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

Razet, D.

A.-L. Barillé-Boyer, L. Barillé, H. Massé, D. Razet, and M. Héral, “Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems,” Estuar., Coast. Shelf Sci. 58, 147-153 (2003).
[CrossRef]

Rhea, W. J.

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

Ricker, W. E.

W. E. Ricker, “A note concerning Professor Jolicoeur's comments,” J. Fish. Res. Brd. Can. 32, 1494-1498 (1975).
[CrossRef]

Risovic, D.

Rohlf, F. J.

R. R. Sokal and F. J. Rohlf, Biometry. The Principles and Practice of Statistics in Biological Research (W. H. Freeman, 1969).

Silverberg, N.

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77-98 (1981).

Snyder, W. A.

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

Sokal, R. R.

R. R. Sokal and F. J. Rohlf, Biometry. The Principles and Practice of Statistics in Biological Research (W. H. Freeman, 1969).

Sosik, H. M.

R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48, 2377-2391 (2004).
[CrossRef]

R. E. Green and H. M. Sosik, “Analysis of apparent properties and ocean color models using measurement of seawater constituents in New England continental shelf surface waters,” J. Geophys. Res. 109, C03026, doi:10.1029/2003JC001977 (2004).
[CrossRef]

Sparks, T. N.

L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905-916 (1980).

Stavn, R.

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

Stavn, R. H.

R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: optical implications,” J. Geophys. Res. Oceans 109, C05005, doi:10.1029/2003JC002098 (2004).
[CrossRef]

R. W. Gould Jr., R. H. Stavn, M. S. Twardowski, and G. M. Lamela, “Partitioning optical properties into organic and inorganic components from ocean color imagery,” in Ocean Optics XVI, S.Ackleson and C.Trees, eds. (Office of Naval Research CDROM, 2002).

T. R. Keen and R. H. Stavn, “Developing a capability to forecast coastal ocean optics: minerogenic scattering,” in Proc. 6th International Conference on Estuarine and Coastal Modeling, M. Spaulding and A. Blumberg, eds. (ASCE Press, 2000), pp. 178-193.

Stramski, D.

D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418-2433 (2007).
[CrossRef]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756-767 (2004).
[CrossRef]

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43, 3489-3503(2004).
[CrossRef] [PubMed]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

D. Stramski, S. B. Woźniak, and P. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749-755 (2004).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929-2945(2001).
[CrossRef]

D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538-549 (1997).
[CrossRef]

C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550-560(1997).
[CrossRef]

Sydor, M.

M. Sydor, R. W. Gould, R. A. Arnone, V. I. Haltrin, and W. Goode, “Uniqueness in remote sensing of the inherent optical properties of ocean water,” Appl. Opt. 43, 2156-2162 (2004).
[CrossRef] [PubMed]

R. W. Gould Jr., R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17, 328-341 (2001).

M. Sydor and R. A. Arnone, “Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters,” Appl. Opt. 36, 6905-6912 (1997).
[CrossRef]

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

Trees, C. C.

C. C. Trees, “Analytical analysis of the effect of dissolved solids on suspended solids determination,” J. Water Pollut. Control Fed. 50, 2370-2373 (1978).

Trefry, J. H.

R. A. Feely, J. H. Trefry, and B. Monger, “Chapter 1. Particle sampling and preservation,” in Marine Particles: Analysis and Characterization, D.C.Heard and D.W.Spencer, eds. (American Geophysical Union, 1991), pp. 5-22.
[CrossRef]

Twardowski, M. S.

R. W. Gould Jr., R. H. Stavn, M. S. Twardowski, and G. M. Lamela, “Partitioning optical properties into organic and inorganic components from ocean color imagery,” in Ocean Optics XVI, S.Ackleson and C.Trees, eds. (Office of Naval Research CDROM, 2002).

Vaillancourt, R. D.

W. M. Balch, D. T. Drapeau, T. L. Cucci, and R. D. Vaillancourt, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Molecules (Dover, 1981).

Voss, K. J.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

W. M. Balch, P. M. Holligan, S. G. Ackleson, and K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643(1991).
[CrossRef]

Weidemann, A.

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

Wozniak, S. B.

D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418-2433 (2007).
[CrossRef]

D. Stramski, S. B. Woźniak, and P. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749-755 (2004).
[CrossRef]

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43, 3489-3503(2004).
[CrossRef] [PubMed]

Appl. Opt. (7)

Deep-Sea Research, Part I (1)

D. Risovic, “Two component model of the sea particle size distribution,” Deep-Sea Research, Part I 40, 1459-1473(1993).
[CrossRef]

Estuar., Coast. Shelf Sci. (2)

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar., Coast. Shelf Sci. 67, 219-230 (2006).
[CrossRef]

A.-L. Barillé-Boyer, L. Barillé, H. Massé, D. Razet, and M. Héral, “Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems,” Estuar., Coast. Shelf Sci. 58, 147-153 (2003).
[CrossRef]

Geophys. Res. Lett. (1)

H. Claustre, A. Morel, S. B. Hooker, M. Babin, D. Antoine, K. Oubelkheir, A. Bricaud, K. Leblanc, B. Quéguiner, and S. Maritorena, “Is desert dust making oligotrophic waters greener?,” Geophys. Res. Lett. 29, 1469, doi:10.1029/2001GL014056 (2002).
[CrossRef]

Industrial and Engineering Chemistry, Analytical Edition (1)

J. B. Austin, “Methods of representing distribution of particle size,” Industrial and Engineering Chemistry, Analytical Edition 11, 334-339 (1939).
[CrossRef]

Int. J. Rem. Sens. (1)

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery,” Int. J. Rem. Sens. 24, 3791-3806 (2003).
[CrossRef]

Int. J. Remote Sens. (1)

R. W. Gould Jr. and R. A. Arnone, “Three-dimensional modeling of inherent optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements,” Int. J. Remote Sens. 19, 2141-2159 (1998).
[CrossRef]

J. Coast. Res. (1)

R. W. Gould Jr., R. A. Arnone, and M. Sydor, “Absorption, scattering, and remote-sensing reflectance relationships in coastal waters: testing a new inversion algorithm,” J. Coast. Res. 17, 328-341 (2001).

J. Fish. Res. Brd. Can. (1)

W. E. Ricker, “A note concerning Professor Jolicoeur's comments,” J. Fish. Res. Brd. Can. 32, 1494-1498 (1975).
[CrossRef]

J. Geophys. Res. (4)

W. M. Balch, D. T. Drapeau, T. L. Cucci, and R. D. Vaillancourt, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

E. T. Baker and J. W. Lavelle, “The effect of particle size on the light attenuation coefficient of natural suspensions,” J. Geophys. Res. 89, 8197-8203 (1984).
[CrossRef]

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333-13344 (1995).
[CrossRef]

R. E. Green and H. M. Sosik, “Analysis of apparent properties and ocean color models using measurement of seawater constituents in New England continental shelf surface waters,” J. Geophys. Res. 109, C03026, doi:10.1029/2003JC001977 (2004).
[CrossRef]

J. Geophys. Res. Oceans (2)

R. H. Stavn and T. R. Keen, “Suspended minerogenic particle distributions in high-energy coastal environments: optical implications,” J. Geophys. Res. Oceans 109, C05005, doi:10.1029/2003JC002098 (2004).
[CrossRef]

M. Defoin-Platel and M. Chami, “How ambiguous is the inverse problem of ocean color in coastal waters?,” J. Geophys. Res. Oceans 112, C03004, doi:10.1029/2006JC003847 (2007).
[CrossRef]

J. Mar. Res. (2)

A. Morel and Y.-H. Ahn, “Optical efficiency factors of free-living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48, 145-175 (1990).
[CrossRef]

C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, “Log-normal distributions of suspended particles in the open ocean,” J. Mar. Res. 39, 77-98 (1981).

J. Plankton Res. (1)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18, 2223 (1996), Table VIII, p. 2341.
[CrossRef]

J. Sediment. Petrol. (3)

K. Mahmoud, “Lognormal size distribution of particulate matter,” J. Sediment. Petrol. 43, 1161-1166 (1973).

L. J. Doyle and T. N. Sparks, “Sediments of the Mississippi, Alabama, and Florida (MAFLA) continental shelf,” J. Sediment. Petrol. 50, 905-916 (1980).

A. G. Johnson and J. T. Kelley, “Temporal, spatial, and textural variation in the mineralogy of Mississippi river suspended sediment,” J. Sediment. Petrol. 54, 67-72 (1984).

J. Water Pollut. Control Fed. (1)

C. C. Trees, “Analytical analysis of the effect of dissolved solids on suspended solids determination,” J. Water Pollut. Control Fed. 50, 2370-2373 (1978).

Limnol. Oceanogr. (13)

F. Peng and S. W. Effler, “Suspended minerogenic particles in a reservoir: light-scattering features from individual particle analysis,” Limnol. Oceanogr. 52, 204-216 (2007).
[CrossRef]

D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418-2433 (2007).
[CrossRef]

D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538-549 (1997).
[CrossRef]

C. D. Mobley and D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550-560(1997).
[CrossRef]

M. Jonasz and G. Fournier, “Approximation of the size distribution of marine particles by a sum of log-normal functions,” Limnol. Oceanogr. 41, 744-754 (1996).
[CrossRef]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49, 756-767 (2004).
[CrossRef]

J. T. O. Kirk, “Dependence of relationships between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350-356 (1984).
[CrossRef]

D. Stramski, S. B. Woźniak, and P. Flatau, “Optical properties of Asian mineral dust suspended in seawater,” Limnol. Oceanogr. 49, 749-755 (2004).
[CrossRef]

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48, 2377-2391 (2004).
[CrossRef]

W. M. Balch, P. M. Holligan, S. G. Ackleson, and K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643(1991).
[CrossRef]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847-858 (1998).
[CrossRef]

Mar. Biol. (1)

E. A. Laws and J. W. Archie, “Appropriate use of regression analysis in marine biology,” Mar. Biol. 65, 13-16 (1981).
[CrossRef]

Nature (1)

C. Moulin, C. E. Lambert, F. Dulac, and U. Dyan, “Control of atmospheric export of dust from North Africa by the North Atlantic oscillation,” Nature 387, 691-694 (1997).
[CrossRef]

Prog. Oceanogr. (1)

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Remote Sens. Environ. (1)

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations in moderately turbid waters; the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373-383 (2005).
[CrossRef]

Trans. Gulf Coast Assoc. Geol. Soc. (1)

W. C. Isphording, F. D. Imsand, and R. B. Jackson, “Fluvial sediment characteristics of the Mobile River Delta,” Trans. Gulf Coast Assoc. Geol. Soc. XLVI, 397-408 (1985).

Other (16)

H. C. van de Hulst, Light Scattering by Small Molecules (Dover, 1981).

R. R. Sokal and F. J. Rohlf, Biometry. The Principles and Practice of Statistics in Biological Research (W. H. Freeman, 1969).

R. A. Feely, J. H. Trefry, and B. Monger, “Chapter 1. Particle sampling and preservation,” in Marine Particles: Analysis and Characterization, D.C.Heard and D.W.Spencer, eds. (American Geophysical Union, 1991), pp. 5-22.
[CrossRef]

R. W. Gould Jr., R. H. Stavn, M. S. Twardowski, and G. M. Lamela, “Partitioning optical properties into organic and inorganic components from ocean color imagery,” in Ocean Optics XVI, S.Ackleson and C.Trees, eds. (Office of Naval Research CDROM, 2002).

N. Jerlov, Marine Optics (Elsevier, 1975).

O. J. Dunn and V. A. Clark, Applied Statistics: Analysis of Variance and Regression (John Wiley, 1974).

L. M. Mezei, Practical Spreadsheet Statistics & Curve Fitting for Scientists and Engineers (Prentice-Hall, 1990).

B. F. J. Manly, Multivariate Statistical Methods: A Primer (Chapman & Hall, 2005).

A. Cunningham, A. Dudek, and D. Mckee, “Comparison of satellite and surface measurements of water leaving radiance and seawater composition in an optically variable shelf sea,” presented at the Eighth International Conference on Remote Sensing for Marine and Coastal Environments, Halifax, Nova Scotia, Canada, 17-19 May 2005.

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, and D. V. Pozdnayakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

D. Antoine, A. Morel, and H. Claustre, “Some peculiarities of case 1 waters optical properties in the northwestern Mediterranean Sea,” presented at the ASLO/TOS Ocean Research Conference, Honolulu, Hawaii, USA, 15-20 February 2004.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

E. J. McCartney, Optics of the Atmosphere. Scattering by Molecules and Particles (Wiley-Interscience, 1976).

T. R. Keen and R. H. Stavn, “Developing a capability to forecast coastal ocean optics: minerogenic scattering,” in Proc. 6th International Conference on Estuarine and Coastal Modeling, M. Spaulding and A. Blumberg, eds. (ASCE Press, 2000), pp. 178-193.

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamella, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).

S. R. Pearlman, H. S. Costa, R. A. Jung, J. J. McKeown, and H. E. Pearson, “Solids,” in Standard Methods for the Examination of Water and Wastewater, A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, eds. (American Public Health Association, 1995), Section 209, pp. 2-53-2-64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Spectral mass-specific scattering cross sections of suspended coccolith lith plates from data and calculations of Gordon and Du [28].

Fig. 2
Fig. 2

Spectral mass-specific optical scattering cross sections of suspended mineral matter in Mobile Bay, Alabama. Model I-type multiple regression results with standard errors plotted along with the estimates from the Model II-type multiple regression. In the figure legend s[PIM] represents σ [ PIM ] and s[POM] represents σ [ POM ] .

Fig. 3
Fig. 3

Spectral mass-specific optical scattering cross sections of suspended organic matter in Mobile Bay, Alabama. Model I-type multiple regression results with standard errors plotted along with the estimates from the Model II-type multiple regression. In the figure legend s[PIM] represents σ [ PIM ] and s[POM] represents σ [ POM ] .

Fig. 4
Fig. 4

Spectral mass-specific optical scattering cross sections of suspended mineral matter at Southwest Pass, Mississippi River, Louisiana. Model I-type multiple regression results with standard errors plotted along with the estimates from the Model II-type multiple regression. In the figure legend s[PIM] represents σ [ PIM ] and s[POM] represents σ [ POM ] .

Fig. 5
Fig. 5

Spectral mass-specific optical scattering cross sections of suspended organic matter at Southwest Pass, Mississippi River, Louisiana. Model I-type multiple regression results with standard errors plotted along with the estimates from the Model II-type multiple regression. In the figure legend s[PIM] represents σ [ PIM ] and s[POM] represents σ [ POM ] .

Fig. 6
Fig. 6

Partitioned total particle spectral scattering coefficient from station 23s01, Mobile Bay, Alabama. The suspended mineral spectral particle scattering coefficient ( b m ) and the suspended organic spectral particle scattering coefficient ( b o ) indicated.

Fig. 7
Fig. 7

Partitioned total particle spectral scattering coefficient from station AC3-13, Southwest Pass, Mississippi River, Louisiana. The suspended mineral spectral particle scattering coefficient ( b m ) and the suspended organic spectral particle scattering coefficient ( b o ) indicated.

Fig. 8
Fig. 8

Comparison of particle spectral scattering coefficients for stations of high suspended mineral concentrations ( PIM = 6.87 22.24 mg l 1 ), Mobile Bay, Alabama. Particle spectral scattering coefficients reconstructed from mass-specific spectral scattering cross sections and PIM and POM. (a) Reconstructed particle spectral scattering coefficients utilizing Model II-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients. (b) Reconstructed particle spectral scattering coefficients utilizing Model I-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients.

Fig. 9
Fig. 9

Comparison of particle spectral scattering coefficients for stations of high suspended mineral concentrations ( PIM = 6.01 9.53 mg l 1 ), Southwest Pass, Mississippi River mouth. Particle spectral scattering coefficients reconstructed from mass- specific spectral scattering cross sections and PIM and POM. (a) Reconstructed particle spectral scattering coefficients utilizing Model II-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients. (b) Reconstructed particle spectral scattering coefficients utilizing Model I-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients.

Fig. 10
Fig. 10

Comparison of particle spectral scattering coefficients for stations of medium suspended mineral concentrations ( PIM = 5.00 6.86 mg l 1 ), Mobile Bay, Alabama. Particle spectral scattering coefficients reconstructed from mass-specific spectral scattering cross sections and PIM and POM. (a) Reconstructed particle spectral scattering coefficients utilizing Model II-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients. (b) Reconstructed particle spectral scattering coefficients utilizing Model I-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients.

Fig. 11
Fig. 11

Comparison of particle spectral scattering coefficients for stations of medium suspended mineral concentrations ( PIM = 1.22 3.76 mg l 1 ), Southwest Pass, Mississippi River mouth. Particle spectral scattering coefficients reconstructed from mass- specific spectral scattering cross sections and PIM and POM. (a) Reconstructed particle spectral scattering coefficients utilizing Model II-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients. (b) Reconstructed particle spectral scattering coefficients utilizing Model I-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients.

Fig. 12
Fig. 12

Comparison of particle spectral scattering coefficients for stations of low suspended mineral concentrations ( PIM = 1.56 4.65 mg l 1 ), Mobile Bay, Alabama. Particle spectral scattering coefficients reconstructed from mass-specific spectral scattering cross sections and PIM and POM. (a) Reconstructed particle spectral scattering coefficients utilizing Model II-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients. (b) Reconstructed particle spectral scattering coefficients utilizing Model I-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients.

Fig. 13
Fig. 13

Comparison of particle spectral scattering coefficients for stations of low suspended mineral concentrations ( PIM = 0.05 1.12 mg l 1 ), Southwest Pass, Mississippi River mouth. Particle spectral scattering coefficients reconstructed from mass- specific spectral scattering cross sections and PIM and POM. (a) Reconstructed particle spectral scattering coefficients utilizing Model II-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients. (b) Reconstructed particle spectral scattering coefficients utilizing Model I-type mass-specific spectral scattering cross sections plotted against measured particle spectral scattering coefficients.

Tables (1)

Tables Icon

Table 1 Notation

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

σ = 2 π 0 π ( d σ ( θ ) d Ω ) sin θ d θ ,
b p ( λ ) = i σ i ( λ ) N i ,
b m ( λ ) = σ m ( λ ) N m ,
b o ( λ ) = σ o ( λ ) N o ,
b p ( λ ) = b m ( λ ) + b o ( λ ) .
N m = V Tm / ν m ,
PIM = ρ m V Tm = N m ρ m ν m ,
N m = ( 1 ρ m ν m ) PIM , b m ( λ ) = ( σ m ( λ ) ρ m ν m ) PIM ,
σ PIM ( λ ) = σ m ( λ ) ρ m ν m ,
ρ o = ρ do f do + ρ w f w ,
σ POM ( λ ) = σ o ( λ ) ρ do f do ν o .
σ PIM ( λ ) = 1 ρ m i j [ σ m ( λ ) ] i j ( v m ) i j ,
σ PIM ( λ ) = 1 ρ m i j [ σ m ( λ ) ] i j ( N m ) i j ( V Tm ) i j ,
σ POM ( λ ) = 1 ρ do i j [ σ o ( λ ) ] i j ( f do ) i j ( ν o ) i j ,
σ POM ( λ ) = 1 ρ do i j [ σ o ( λ ) ] i j ( N o ) i j ( f do ) i j ( V To ) i j .
b p ( λ ) = g ( λ ) + σ PIM ( λ ) PIM + σ POM ( λ ) POM .
y 2 = [ y ¯ 2 + ( s 2 s 1 ) ( a 21 a 22 ) y ¯ 1 ] + ( s 2 s 1 ) ( a 21 a 22 ) y 1 ,
y 3 = [ ( a 31 a 33 ) ( s 3 s 1 ) y ¯ 1 + ( a 32 a 33 ) ( s 3 s 2 ) y ¯ 2 + y ¯ 3 ] + ( a 31 a 33 ) ( s 3 s 1 ) y 1 + ( a 32 a 33 ) ( s 3 s 2 ) y 2 ,
σ ^ PIM ( λ ) = ( a 31 a 33 ) ( s 3 s 1 ) ,
σ ^ POM ( λ ) = ( a 32 a 33 ) ( s 3 s 2 ) ,

Metrics