Abstract

A novel design of a nonpolarizing beam splitter with a Ag layer in a cube was proposed and optimized, based on the needle optimization. The digital simulations of the reflectance and reflection-induced retardance were presented. The simulation results showed that both the amplitude and the phase characteristics of the nonpolarizing beam splitter could realize the design targets. The difference between the simulated and the target reflectance of 50% is less than 0.4% and the simulated and the reflection- induced retardance is less than 0.62° in the 12601360nm range for both p and s components.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Costich, “Reduction of polarization effects in interference coatings,” Appl. Opt. 9, 866-870 (1970).
    [CrossRef] [PubMed]
  2. H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
    [CrossRef]
  3. A. Thelen, “Nonpolarizing interference films inside a glass cube,” Appl. Opt. 15, 2983-2985 (1976).
    [CrossRef] [PubMed]
  4. Z. Knittl and H. Houserkova, “Equivalent layers in oblique incidence: the problem of unsplit admittances and depolarization of partial reflectors,” Appl. Opt. 21, 2055-2068 (1982).
    [CrossRef] [PubMed]
  5. C. M. de Sterke, C. J. van der Laan, and H. J. Frankena, “Nonpolarizing beam splitter design,” Appl. Opt. 22, 595-601(1983).
    [CrossRef] [PubMed]
  6. M. Gilo, “Design of a nonpolarizing beam splitter inside a glass cube,” Appl. Opt. 31, 5345-5349 (1992).
    [CrossRef] [PubMed]
  7. J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
    [CrossRef]
  8. H. Qi, R. Hong, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing and polarizing filter design,” Appl. Opt. 44, 2343-2348 (2005).
    [CrossRef] [PubMed]
  9. X. Xu, J. Shao, and Z. Fan, “Nonpolarizing beam splitter designed by frustrated total internal reflection inside a glass cube,” Appl. Opt. 45, 4297-4302 (2006).
    [CrossRef] [PubMed]
  10. E. Spiller, “Totally reflecting thin-film phase retarders,” Appl. Opt. 23, 3544-3549 (1984).
    [CrossRef] [PubMed]
  11. Q. B. Li, Z. P. Wang, and W. M. Sun, “Novel method for measuring reflection-induced retardance employing polarizers and its theoretical analysis,” J. Harbin Eng. Univ. 23, 59-62(2002).
  12. L. Y. Chang and S. H. Mo, “Design of non-polarizing prism beam splitter,” in Optical Interference Coatings, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1988), pp. 381-384.
  13. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493-5508 (1996).
    [CrossRef] [PubMed]

2006

2005

2002

Q. B. Li, Z. P. Wang, and W. M. Sun, “Novel method for measuring reflection-induced retardance employing polarizers and its theoretical analysis,” J. Harbin Eng. Univ. 23, 59-62(2002).

1999

1996

1992

1984

1983

1982

1976

1974

H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
[CrossRef]

1970

Chang, L. Y.

L. Y. Chang and S. H. Mo, “Design of non-polarizing prism beam splitter,” in Optical Interference Coatings, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1988), pp. 381-384.

Ciosek, J.

Clarke, G. A.

Costich, V. R.

de Sterke, C. M.

DeBell, G. W.

Dobrowolski, J. A.

Fan, Z.

Frankena, H. J.

Gilo, M.

Hong, R.

Houserkova, H.

Knittl, Z.

Laframboise, G.

Li, Q. B.

Q. B. Li, Z. P. Wang, and W. M. Sun, “Novel method for measuring reflection-induced retardance employing polarizers and its theoretical analysis,” J. Harbin Eng. Univ. 23, 59-62(2002).

Mahlein, H. F.

H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
[CrossRef]

Mo, S. H.

L. Y. Chang and S. H. Mo, “Design of non-polarizing prism beam splitter,” in Optical Interference Coatings, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1988), pp. 381-384.

Qi, H.

Shao, J.

Spiller, E.

Sun, W. M.

Q. B. Li, Z. P. Wang, and W. M. Sun, “Novel method for measuring reflection-induced retardance employing polarizers and its theoretical analysis,” J. Harbin Eng. Univ. 23, 59-62(2002).

Thelen, A.

Tikhonravov, A. V.

Trubetskov, M. K.

van der Laan, C. J.

Wang, Z. P.

Q. B. Li, Z. P. Wang, and W. M. Sun, “Novel method for measuring reflection-induced retardance employing polarizers and its theoretical analysis,” J. Harbin Eng. Univ. 23, 59-62(2002).

Xu, X.

Yi, K.

Appl. Opt.

V. R. Costich, “Reduction of polarization effects in interference coatings,” Appl. Opt. 9, 866-870 (1970).
[CrossRef] [PubMed]

A. Thelen, “Nonpolarizing interference films inside a glass cube,” Appl. Opt. 15, 2983-2985 (1976).
[CrossRef] [PubMed]

Z. Knittl and H. Houserkova, “Equivalent layers in oblique incidence: the problem of unsplit admittances and depolarization of partial reflectors,” Appl. Opt. 21, 2055-2068 (1982).
[CrossRef] [PubMed]

C. M. de Sterke, C. J. van der Laan, and H. J. Frankena, “Nonpolarizing beam splitter design,” Appl. Opt. 22, 595-601(1983).
[CrossRef] [PubMed]

E. Spiller, “Totally reflecting thin-film phase retarders,” Appl. Opt. 23, 3544-3549 (1984).
[CrossRef] [PubMed]

M. Gilo, “Design of a nonpolarizing beam splitter inside a glass cube,” Appl. Opt. 31, 5345-5349 (1992).
[CrossRef] [PubMed]

J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493-5508 (1996).
[CrossRef] [PubMed]

H. Qi, R. Hong, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing and polarizing filter design,” Appl. Opt. 44, 2343-2348 (2005).
[CrossRef] [PubMed]

X. Xu, J. Shao, and Z. Fan, “Nonpolarizing beam splitter designed by frustrated total internal reflection inside a glass cube,” Appl. Opt. 45, 4297-4302 (2006).
[CrossRef] [PubMed]

J. Harbin Eng. Univ.

Q. B. Li, Z. P. Wang, and W. M. Sun, “Novel method for measuring reflection-induced retardance employing polarizers and its theoretical analysis,” J. Harbin Eng. Univ. 23, 59-62(2002).

Opt. Acta

H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
[CrossRef]

Other

L. Y. Chang and S. H. Mo, “Design of non-polarizing prism beam splitter,” in Optical Interference Coatings, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1988), pp. 381-384.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of an ideal NPBS.

Fig. 2
Fig. 2

Reflectance of the infrared NPBS composed of metal-dielectric thin films.

Fig. 3
Fig. 3

Reflection-induced retardance of the infrared NPBS composed of metal-dielectric thin films.

Fig. 4
Fig. 4

Magnified view of the region in Fig. 2.

Fig. 5
Fig. 5

Absorptance of the infrared NPBS composed of metal-dielectric thin films.

Tables (3)

Tables Icon

Table 1 Optical Constants of the Materials

Tables Icon

Table 2 Parameters of Optical Thin Films

Tables Icon

Table 3 Optimization Data of the NPBS

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n p = n / cos θ ,
n s = n cos θ .
Δ n = n p / n s ,
Δ r = arg ( r p / r s ) ,
R p min = ( k / n 1 + 1 + ( k / n ) 2 ) 2 .
| R p R s | < 1 % , | R p 50 % | < 1 % , | R s 50 % | < 1 % , | Δ r | < 5 % .
| R p R s | = 0.97 % < 1 % , | R p 50 % | = 0.05 % < 1 % , | R s 50 % | = 0.93 % < 1 % , | Δ r | = 1.97 ° < 5 ° .

Metrics