Abstract

A theoretical model of modulation transfer spectroscopy (MTS) that includes pump beam depletion is presented and experimentally verified with data covering visible iodine transitions at 532, 543, and 612nm. This model is used to determine the values for pressure, interaction length, and saturation intensity that yield maximum MTS signals for frequency locking to iodine transitions. The approach is demonstrated for iodine transitions at 532, 633, and 778nm, with the results showing that theoretically the frequency instability scales inversely to the absorption coefficient.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Ketterle, “ Experimental studies of Bose-Einstein condensation,” Phys. Today 52, 30-35 (1999).
    [CrossRef]
  2. L. Wieman and T. Hollberg, “Using diode lasers for atomic physics,” Rev. of Sci. Instr. 62, 1-20 (1991).
  3. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103-133 (2003).
    [CrossRef]
  4. Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
    [CrossRef]
  5. L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2 stabilized lasers between BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567-572 (2001).
    [CrossRef]
  6. S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
    [CrossRef]
  7. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, "Absolute Frequency Atlas of Molecular I2 lines at 532 nm," IEEE Trans. Instrum. Meas. 48, 544-549 (1999).
    [CrossRef]
  8. W. R. C. Rowley and P. Gill, "Performance of internal-mirror frequency-stabilized He-Ne lasers emitting green, yellow or orange light," Appl. Phys. B 51, 421-426 (1990).
  9. E. Jaatinen, "An iodine stabilized laser source at two wavelengths for accurate dimensional measurements," Rev. Sci. Instrum. 74, 1359-1361 (2003).
    [CrossRef]
  10. P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, "Spectroscopy using quantum logic," Science 309, 749-752 (2005).
    [CrossRef]
  11. S. N. Bagaev and V. P. Chebotaev, "Laser frequency standards," Sov. Phys.-Uspekhi 29, 82-103 (1986).
  12. J. H. Shirley, "Modulation transfer processes in optical heterodyne saturation spectroscopy," Opt. Lett. 7, 537-539 (1982).
  13. G. Camy, Ch. J. Borde, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41, 325-329 (1982).
    [CrossRef]
  14. G. Camy, D. Pinaud, N. Courtier, and H. C. Chuan, “Recent developments in high resolution saturation spectroscopy obtained by means of acousto-optic modulators,” Revue Phys. Appl. 17, 357-363 (1982).
  15. J. J. Synder, R. K. Raj, M. D. Bloch, and M. Ducloy, “High Sensitivity nonlinear spectroscopy using a frequency offset pump,” Opt. Lett. 5, 163-165 (1980).
  16. L.-S. Ma and J. L. Hall, "Optical heterodyne spectroscopy enhanced by an external optical cavity: Toward improved working standards," IEEE J. Quant. Elect. 26, 2006-2012(1990).
  17. M. L. Eickhoff and J. L. Hall, "Optical Frequency Standard at 532 nm," IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
    [CrossRef]
  18. G. Galzerano, F. Bertinetto, and E. Bava, "Characterization of the modulation transfer spectroscopy method by means of He-Ne lasers and 127I2 absorption lines at λ=612 nm," Metrologia 37, 149-154 (2000).
    [CrossRef]
  19. E. Jaatinen and J.-M. Chartier, "Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm," Metrologia 35, 75-81 (1998).
    [CrossRef]
  20. R. Klein and A. Arie, "Observation of iodine transitions using the second and third harmonics of a 1.5-μm laser," Appl. Phys. B 75, 79-83 (2002).
  21. E. Jaatinen, "Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy," Opt. Commun. 120, 91-97 (1995).
    [CrossRef]
  22. J. M. Supplee, E. A. Whittaker, and W. Lenth, "Theoretical description of frequency modulation and wavelength modulation spectroscopy," Appl. Opt. 33, 6294-6302 (1994).
  23. W. Demtroder, Laser Spectroscopy - Basic Concepts and Instrumentation, 2nd ed. (Springer, 1998).
  24. P. Cerez and S. Bennett, "Helium-Neon laser stabilised by saturated absorption in iodine at 612 nm," Appl. Opt. 18, 1079-1083 (1979).
  25. A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase modulation laser spectroscopy,” Phys. Rev. A 25, 2606-2621 (1982).
    [CrossRef]
  26. W.-Y. S. Cheng and J.-T. Shy, "Wavelength standard at 543 nm and the corresponding 127I2 hyperfine transitions," J. Opt. Soc. Am. B 18, 363-369 (2001).
    [CrossRef]
  27. M. Glaser, "Properties of a He-Ne laser a λ=612 nm, stabilized by means of an external iodine absorption cell," IEEE Trans. Instrum. Meas. 36, 604-608 (1987).
  28. H. R. Simonsen and F. Rose, "Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength of lambda =633 nm," Metrologia 37, 651-658 (2000).
    [CrossRef]
  29. P. Cerez and A. Brillet, "Iodine stablized He-Ne laser with a hot wall iodine cell," Opt. Commun. 21, 332-336 (1977).
    [CrossRef]
  30. A. Titov, A. I. Malinovsky, and M. Erin, "Determination of saturation parameter in iodine and precise molecular linewidth measurements in He-Ne/I2 standard at 633 nm," Opt. Commun. 136, 327-334 (1997).
    [CrossRef]

2005 (1)

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, "Spectroscopy using quantum logic," Science 309, 749-752 (2005).
[CrossRef]

2003 (3)

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103-133 (2003).
[CrossRef]

E. Jaatinen, "An iodine stabilized laser source at two wavelengths for accurate dimensional measurements," Rev. Sci. Instrum. 74, 1359-1361 (2003).
[CrossRef]

2002 (1)

R. Klein and A. Arie, "Observation of iodine transitions using the second and third harmonics of a 1.5-μm laser," Appl. Phys. B 75, 79-83 (2002).

2001 (3)

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2 stabilized lasers between BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567-572 (2001).
[CrossRef]

W.-Y. S. Cheng and J.-T. Shy, "Wavelength standard at 543 nm and the corresponding 127I2 hyperfine transitions," J. Opt. Soc. Am. B 18, 363-369 (2001).
[CrossRef]

2000 (2)

H. R. Simonsen and F. Rose, "Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength of lambda =633 nm," Metrologia 37, 651-658 (2000).
[CrossRef]

G. Galzerano, F. Bertinetto, and E. Bava, "Characterization of the modulation transfer spectroscopy method by means of He-Ne lasers and 127I2 absorption lines at λ=612 nm," Metrologia 37, 149-154 (2000).
[CrossRef]

1999 (2)

W. Ketterle, “ Experimental studies of Bose-Einstein condensation,” Phys. Today 52, 30-35 (1999).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, "Absolute Frequency Atlas of Molecular I2 lines at 532 nm," IEEE Trans. Instrum. Meas. 48, 544-549 (1999).
[CrossRef]

1998 (1)

E. Jaatinen and J.-M. Chartier, "Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm," Metrologia 35, 75-81 (1998).
[CrossRef]

1997 (1)

A. Titov, A. I. Malinovsky, and M. Erin, "Determination of saturation parameter in iodine and precise molecular linewidth measurements in He-Ne/I2 standard at 633 nm," Opt. Commun. 136, 327-334 (1997).
[CrossRef]

1995 (2)

M. L. Eickhoff and J. L. Hall, "Optical Frequency Standard at 532 nm," IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
[CrossRef]

E. Jaatinen, "Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy," Opt. Commun. 120, 91-97 (1995).
[CrossRef]

1994 (1)

1991 (1)

L. Wieman and T. Hollberg, “Using diode lasers for atomic physics,” Rev. of Sci. Instr. 62, 1-20 (1991).

1990 (2)

W. R. C. Rowley and P. Gill, "Performance of internal-mirror frequency-stabilized He-Ne lasers emitting green, yellow or orange light," Appl. Phys. B 51, 421-426 (1990).

L.-S. Ma and J. L. Hall, "Optical heterodyne spectroscopy enhanced by an external optical cavity: Toward improved working standards," IEEE J. Quant. Elect. 26, 2006-2012(1990).

1987 (1)

M. Glaser, "Properties of a He-Ne laser a λ=612 nm, stabilized by means of an external iodine absorption cell," IEEE Trans. Instrum. Meas. 36, 604-608 (1987).

1986 (1)

S. N. Bagaev and V. P. Chebotaev, "Laser frequency standards," Sov. Phys.-Uspekhi 29, 82-103 (1986).

1982 (4)

G. Camy, Ch. J. Borde, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41, 325-329 (1982).
[CrossRef]

G. Camy, D. Pinaud, N. Courtier, and H. C. Chuan, “Recent developments in high resolution saturation spectroscopy obtained by means of acousto-optic modulators,” Revue Phys. Appl. 17, 357-363 (1982).

A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase modulation laser spectroscopy,” Phys. Rev. A 25, 2606-2621 (1982).
[CrossRef]

J. H. Shirley, "Modulation transfer processes in optical heterodyne saturation spectroscopy," Opt. Lett. 7, 537-539 (1982).

1980 (1)

1979 (1)

1977 (1)

P. Cerez and A. Brillet, "Iodine stablized He-Ne laser with a hot wall iodine cell," Opt. Commun. 21, 332-336 (1977).
[CrossRef]

Ahola, T. E.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

Arie, A.

R. Klein and A. Arie, "Observation of iodine transitions using the second and third harmonics of a 1.5-μm laser," Appl. Phys. B 75, 79-83 (2002).

Bagaev, S. N.

S. N. Bagaev and V. P. Chebotaev, "Laser frequency standards," Sov. Phys.-Uspekhi 29, 82-103 (1986).

Bagayev, S. N.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Balling, P.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

Bava, E.

G. Galzerano, F. Bertinetto, and E. Bava, "Characterization of the modulation transfer spectroscopy method by means of He-Ne lasers and 127I2 absorption lines at λ=612 nm," Metrologia 37, 149-154 (2000).
[CrossRef]

Bennett, S.

Bergquist, J. C.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, "Spectroscopy using quantum logic," Science 309, 749-752 (2005).
[CrossRef]

Bertinetto, F.

G. Galzerano, F. Bertinetto, and E. Bava, "Characterization of the modulation transfer spectroscopy method by means of He-Ne lasers and 127I2 absorption lines at λ=612 nm," Metrologia 37, 149-154 (2000).
[CrossRef]

Bloch, M. D.

Borde, Ch. J.

G. Camy, Ch. J. Borde, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41, 325-329 (1982).
[CrossRef]

Brewer, R. G.

A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase modulation laser spectroscopy,” Phys. Rev. A 25, 2606-2621 (1982).
[CrossRef]

Brillet, A.

P. Cerez and A. Brillet, "Iodine stablized He-Ne laser with a hot wall iodine cell," Opt. Commun. 21, 332-336 (1977).
[CrossRef]

C. Rowley, W. R.

W. R. C. Rowley and P. Gill, "Performance of internal-mirror frequency-stabilized He-Ne lasers emitting green, yellow or orange light," Appl. Phys. B 51, 421-426 (1990).

Camy, G.

G. Camy, D. Pinaud, N. Courtier, and H. C. Chuan, “Recent developments in high resolution saturation spectroscopy obtained by means of acousto-optic modulators,” Revue Phys. Appl. 17, 357-363 (1982).

G. Camy, Ch. J. Borde, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41, 325-329 (1982).
[CrossRef]

Cerez, P.

P. Cerez and S. Bennett, "Helium-Neon laser stabilised by saturated absorption in iodine at 612 nm," Appl. Opt. 18, 1079-1083 (1979).

P. Cerez and A. Brillet, "Iodine stablized He-Ne laser with a hot wall iodine cell," Opt. Commun. 21, 332-336 (1977).
[CrossRef]

Chartier, J.-M.

E. Jaatinen and J.-M. Chartier, "Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm," Metrologia 35, 75-81 (1998).
[CrossRef]

Chebotaev, V. P.

S. N. Bagaev and V. P. Chebotaev, "Laser frequency standards," Sov. Phys.-Uspekhi 29, 82-103 (1986).

Chuan, H. C.

G. Camy, D. Pinaud, N. Courtier, and H. C. Chuan, “Recent developments in high resolution saturation spectroscopy obtained by means of acousto-optic modulators,” Revue Phys. Appl. 17, 357-363 (1982).

Courtier, N.

G. Camy, D. Pinaud, N. Courtier, and H. C. Chuan, “Recent developments in high resolution saturation spectroscopy obtained by means of acousto-optic modulators,” Revue Phys. Appl. 17, 357-363 (1982).

Demtroder, W.

W. Demtroder, Laser Spectroscopy - Basic Concepts and Instrumentation, 2nd ed. (Springer, 1998).

DeVoe, R. G.

A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase modulation laser spectroscopy,” Phys. Rev. A 25, 2606-2621 (1982).
[CrossRef]

Ducloy, M.

G. Camy, Ch. J. Borde, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41, 325-329 (1982).
[CrossRef]

J. J. Synder, R. K. Raj, M. D. Bloch, and M. Ducloy, “High Sensitivity nonlinear spectroscopy using a frequency offset pump,” Opt. Lett. 5, 163-165 (1980).

Eickhoff, M. L.

M. L. Eickhoff and J. L. Hall, "Optical Frequency Standard at 532 nm," IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
[CrossRef]

Erin, M.

A. Titov, A. I. Malinovsky, and M. Erin, "Determination of saturation parameter in iodine and precise molecular linewidth measurements in He-Ne/I2 standard at 633 nm," Opt. Commun. 136, 327-334 (1997).
[CrossRef]

Galzerano, G.

G. Galzerano, F. Bertinetto, and E. Bava, "Characterization of the modulation transfer spectroscopy method by means of He-Ne lasers and 127I2 absorption lines at λ=612 nm," Metrologia 37, 149-154 (2000).
[CrossRef]

Gill, P.

W. R. C. Rowley and P. Gill, "Performance of internal-mirror frequency-stabilized He-Ne lasers emitting green, yellow or orange light," Appl. Phys. B 51, 421-426 (1990).

Glaser, M.

M. Glaser, "Properties of a He-Ne laser a λ=612 nm, stabilized by means of an external iodine absorption cell," IEEE Trans. Instrum. Meas. 36, 604-608 (1987).

Hall, J. L.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, "Absolute Frequency Atlas of Molecular I2 lines at 532 nm," IEEE Trans. Instrum. Meas. 48, 544-549 (1999).
[CrossRef]

M. L. Eickhoff and J. L. Hall, "Optical Frequency Standard at 532 nm," IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
[CrossRef]

L.-S. Ma and J. L. Hall, "Optical heterodyne spectroscopy enhanced by an external optical cavity: Toward improved working standards," IEEE J. Quant. Elect. 26, 2006-2012(1990).

Hansch, T. W.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Hollberg, T.

L. Wieman and T. Hollberg, “Using diode lasers for atomic physics,” Rev. of Sci. Instr. 62, 1-20 (1991).

Holzwarth, R.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Hong, F.-L.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2 stabilized lasers between BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567-572 (2001).
[CrossRef]

Itano, W. M.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, "Spectroscopy using quantum logic," Science 309, 749-752 (2005).
[CrossRef]

Jaatinen, E.

E. Jaatinen, "An iodine stabilized laser source at two wavelengths for accurate dimensional measurements," Rev. Sci. Instrum. 74, 1359-1361 (2003).
[CrossRef]

E. Jaatinen and J.-M. Chartier, "Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm," Metrologia 35, 75-81 (1998).
[CrossRef]

E. Jaatinen, "Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy," Opt. Commun. 120, 91-97 (1995).
[CrossRef]

Juncar, P.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2 stabilized lasers between BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567-572 (2001).
[CrossRef]

Ketterle, W.

W. Ketterle, “ Experimental studies of Bose-Einstein condensation,” Phys. Today 52, 30-35 (1999).
[CrossRef]

Klein, R.

R. Klein and A. Arie, "Observation of iodine transitions using the second and third harmonics of a 1.5-μm laser," Appl. Phys. B 75, 79-83 (2002).

Kren, P.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

Langer, C.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, "Spectroscopy using quantum logic," Science 309, 749-752 (2005).
[CrossRef]

Lenth, W.

Ma, L.-S.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2 stabilized lasers between BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567-572 (2001).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, "Absolute Frequency Atlas of Molecular I2 lines at 532 nm," IEEE Trans. Instrum. Meas. 48, 544-549 (1999).
[CrossRef]

L.-S. Ma and J. L. Hall, "Optical heterodyne spectroscopy enhanced by an external optical cavity: Toward improved working standards," IEEE J. Quant. Elect. 26, 2006-2012(1990).

Malinovsky, A. I.

A. Titov, A. I. Malinovsky, and M. Erin, "Determination of saturation parameter in iodine and precise molecular linewidth measurements in He-Ne/I2 standard at 633 nm," Opt. Commun. 136, 327-334 (1997).
[CrossRef]

Merimaa, M.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

Millerioux, Y.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2 stabilized lasers between BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567-572 (2001).
[CrossRef]

Nevsky, Yu.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Nyholm, K.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

Picard, S.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2 stabilized lasers between BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567-572 (2001).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, "Absolute Frequency Atlas of Molecular I2 lines at 532 nm," IEEE Trans. Instrum. Meas. 48, 544-549 (1999).
[CrossRef]

Pinaud, D.

G. Camy, D. Pinaud, N. Courtier, and H. C. Chuan, “Recent developments in high resolution saturation spectroscopy obtained by means of acousto-optic modulators,” Revue Phys. Appl. 17, 357-363 (1982).

Pokasov, P. V.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103-133 (2003).
[CrossRef]

Raj, R. K.

Reichert, J.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Riehle, F.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Robertsson, L.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2 stabilized lasers between BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567-572 (2001).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, "Absolute Frequency Atlas of Molecular I2 lines at 532 nm," IEEE Trans. Instrum. Meas. 48, 544-549 (1999).
[CrossRef]

Rose, F.

H. R. Simonsen and F. Rose, "Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength of lambda =633 nm," Metrologia 37, 651-658 (2000).
[CrossRef]

Rosenband, T.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, "Spectroscopy using quantum logic," Science 309, 749-752 (2005).
[CrossRef]

S. Cheng, W.-Y.

Schenzle, A.

A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase modulation laser spectroscopy,” Phys. Rev. A 25, 2606-2621 (1982).
[CrossRef]

Schmidt, P. O.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, "Spectroscopy using quantum logic," Science 309, 749-752 (2005).
[CrossRef]

Schnatz, H.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Shirley, J. H.

Shy, J.-T.

Simonsen, H. R.

H. R. Simonsen and F. Rose, "Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength of lambda =633 nm," Metrologia 37, 651-658 (2000).
[CrossRef]

Skvortsov, M. N.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Supplee, J. M.

Synder, J. J.

Titov, A.

A. Titov, A. I. Malinovsky, and M. Erin, "Determination of saturation parameter in iodine and precise molecular linewidth measurements in He-Ne/I2 standard at 633 nm," Opt. Commun. 136, 327-334 (1997).
[CrossRef]

Udem, Th.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

von Zanthier, J.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Wallerand, J.-P.

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

Walther, H.

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

Whittaker, E. A.

Wieman, L.

L. Wieman and T. Hollberg, “Using diode lasers for atomic physics,” Rev. of Sci. Instr. 62, 1-20 (1991).

Wineland, D. J.

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, "Spectroscopy using quantum logic," Science 309, 749-752 (2005).
[CrossRef]

Ye, J.

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, "Absolute Frequency Atlas of Molecular I2 lines at 532 nm," IEEE Trans. Instrum. Meas. 48, 544-549 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

W. R. C. Rowley and P. Gill, "Performance of internal-mirror frequency-stabilized He-Ne lasers emitting green, yellow or orange light," Appl. Phys. B 51, 421-426 (1990).

R. Klein and A. Arie, "Observation of iodine transitions using the second and third harmonics of a 1.5-μm laser," Appl. Phys. B 75, 79-83 (2002).

IEEE J. Quant. Elect. (1)

L.-S. Ma and J. L. Hall, "Optical heterodyne spectroscopy enhanced by an external optical cavity: Toward improved working standards," IEEE J. Quant. Elect. 26, 2006-2012(1990).

IEEE Trans. Instrum. Meas. (4)

M. L. Eickhoff and J. L. Hall, "Optical Frequency Standard at 532 nm," IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
[CrossRef]

M. Glaser, "Properties of a He-Ne laser a λ=612 nm, stabilized by means of an external iodine absorption cell," IEEE Trans. Instrum. Meas. 36, 604-608 (1987).

S. Picard, L. Robertsson, L.-S. Ma, Y. Millerioux, P. Juncar, J.-P. Wallerand, P. Balling, P. Kren, K. Nyholm, M. Merimaa, T. E. Ahola, and F.-L. Hong, “Results from international comparisons at the BIPM providing a world-wide reference network of 127I2 stabilized frequency doubled Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 52, 236-239 (2003).
[CrossRef]

J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, "Absolute Frequency Atlas of Molecular I2 lines at 532 nm," IEEE Trans. Instrum. Meas. 48, 544-549 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Metrologia (5)

L. Robertsson, S. Picard, F.-L. Hong, Y. Millerioux, P. Juncar, and L.-S. Ma, “International comparison of 127I2 stabilized lasers between BIPM, the NRLM and the BNM-INM, October 2000,” Metrologia 38, 567-572 (2001).
[CrossRef]

H. R. Simonsen and F. Rose, "Absolute measurement of the hyperfine splittings of six molecular 127I2 lines around the He-Ne/I2 wavelength of lambda =633 nm," Metrologia 37, 651-658 (2000).
[CrossRef]

G. Galzerano, F. Bertinetto, and E. Bava, "Characterization of the modulation transfer spectroscopy method by means of He-Ne lasers and 127I2 absorption lines at λ=612 nm," Metrologia 37, 149-154 (2000).
[CrossRef]

E. Jaatinen and J.-M. Chartier, "Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm," Metrologia 35, 75-81 (1998).
[CrossRef]

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103-133 (2003).
[CrossRef]

Opt. Commun. (5)

Yu. Nevsky, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hansch, J. von Zanthier, H. Walther, H. Schnatz, F. Riehle, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev, “Frequency comparison and absolute frequency measurement of I2 stabilized lasers at 532 nm,” Opt. Commun. 192, 263-272 (2001).
[CrossRef]

E. Jaatinen, "Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy," Opt. Commun. 120, 91-97 (1995).
[CrossRef]

G. Camy, Ch. J. Borde, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun. 41, 325-329 (1982).
[CrossRef]

P. Cerez and A. Brillet, "Iodine stablized He-Ne laser with a hot wall iodine cell," Opt. Commun. 21, 332-336 (1977).
[CrossRef]

A. Titov, A. I. Malinovsky, and M. Erin, "Determination of saturation parameter in iodine and precise molecular linewidth measurements in He-Ne/I2 standard at 633 nm," Opt. Commun. 136, 327-334 (1997).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase modulation laser spectroscopy,” Phys. Rev. A 25, 2606-2621 (1982).
[CrossRef]

Phys. Today (1)

W. Ketterle, “ Experimental studies of Bose-Einstein condensation,” Phys. Today 52, 30-35 (1999).
[CrossRef]

Rev. of Sci. Instr. (1)

L. Wieman and T. Hollberg, “Using diode lasers for atomic physics,” Rev. of Sci. Instr. 62, 1-20 (1991).

Rev. Sci. Instrum. (1)

E. Jaatinen, "An iodine stabilized laser source at two wavelengths for accurate dimensional measurements," Rev. Sci. Instrum. 74, 1359-1361 (2003).
[CrossRef]

Revue Phys. Appl. (1)

G. Camy, D. Pinaud, N. Courtier, and H. C. Chuan, “Recent developments in high resolution saturation spectroscopy obtained by means of acousto-optic modulators,” Revue Phys. Appl. 17, 357-363 (1982).

Science (1)

P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, "Spectroscopy using quantum logic," Science 309, 749-752 (2005).
[CrossRef]

Sov. Phys.-Uspekhi (1)

S. N. Bagaev and V. P. Chebotaev, "Laser frequency standards," Sov. Phys.-Uspekhi 29, 82-103 (1986).

Other (1)

W. Demtroder, Laser Spectroscopy - Basic Concepts and Instrumentation, 2nd ed. (Springer, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Depletion of probe and pump fields as they counterpropagate through the absorbing medium.

Fig. 2
Fig. 2

MTS signal magnitude predicted by the various theoretical models as a function of cell pressure for iodine transitions at 532 nm , 543 nm , and 612 nm . Note that the low pressure – weak saturation data has been divided by 10 for the 532 nm and 543 nm graphs and by two for the 612 nm graph to allow it to be viewed on this scale.

Fig. 3
Fig. 3

Ratio of the MTS signal predicted by the volume interaction model to the MTS signal predicted by the hybrid model as a function of cell pressure for three different saturating beam intensities.

Fig. 4
Fig. 4

Measured and theoretically calculated MTS signal magnitude with AM and FM saturating fields as a function of pressure for various iodine transitions.

Fig. 5
Fig. 5

Experimentally observed and theoretically predicted dependence of the 532 nm MTS signal magnitude on pressure for cell lengths of 0.10 m and 0.20 m .

Fig. 6
Fig. 6

532 nm MTS signal magnitude dependence on cell pressure for various cell lengths.

Fig. 7
Fig. 7

MTS signal magnitude dependence on cell length at 532 nm , 633 nm , and 778 nm , when optimum pressure, p max , is used for each length. Note that the 778 nm data has been magnified by a factor of 100 in order for it to be observed on this scale.

Fig. 8
Fig. 8

Dependence of theoretical signal to noise ratio on saturating beam intensity for iodine transitions at 532 nm , 633 nm , and 778 nm over a range of cell lengths.

Tables (2)

Tables Icon

Table 1 Parameters Used in Volume Interaction Model Calculations

Tables Icon

Table 2 Summary of System Parameters Necessary to Obtain Optimum TSNR with a 0.5 m Iodine Cell

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

α INHOM ( I ) = α p ( 1 + I I sat ) 1 / 2 ,
α HOM ( I ) = α p 1 + I I sat .
Sig = K I probe ( exp [ α INHOM d ] exp [ α p d ] ) .
Sig 1 2 K I probe I pump I sat α p d ,
d I probe d z = α ( f ) p ( 1 + I pump ( z ) I sat L ( f ) ) 1 / 2 I probe ,
d I probe d z = α ( f ) p 1 + I pump ( z ) I sat L ( f ) I probe ,
I pump ( z , f ) = I 0 exp [ α ( f ) p ( z d ) ] .
α ( f ) = α 0 i = 1 N exp [ ( f f i ) 2 σ 2 ] .
L ( f ) = i = 1 N γ 2 γ 2 + ( f f i ) 2 .
Trans = I probe ( d ) I probe ( 0 ) = exp [ α ( f ) p d ] × ( 1 + ( 1 + I 0 I sat L ( f ) ) 1 / 2 1 + ( 1 + I 0 exp [ α ( f ) p d ] I sat L ( f ) ) 1 / 2 ) 2 ,
Trans HOM = I probe ( d ) I probe ( 0 ) = exp [ - α ( f ) p d ] × 1 + I 0 I sat L ( f ) 1 + I 0 exp [ - α ( f ) p d ] I sat L ( f ) .
Signal AM = exp [ α ( f ) p d ] × [ H ( f ) - 1 ] , Signal FM = exp [ α ( f ω ) p d ] × H ( f ω ) exp [ α ( f + ω ) p d ] × H ( f + ω ) ,
H ( f ) = ( 1 + ( 1 + I 0 I sat L ( f ) ) 1 / 2 1 + ( 1 + I 0 exp [ α ( f ) p d ] I sat L ( f ) ) 1 / 2 ) 2 .
I pump = I 0 exp [ α p d 2 ] .
Sig Hybrid = exp [ α p d ( 1 + I 0 exp ( α p d / 2 ) I s 0 ( 1 + c p ) 2 ) 1 / 2 ] exp [ α p d ] .
Sig Hybrid 1 α p d ( 1 + I 0 exp ( α p d / 2 ) I s 0 ( 1 + c p ) 2 ) 1 / 2 1 + α p d .
p max = 2 ( α d ( 1 + I 0 I s 0 ) - ( α d + 2 c ) ( 1 + I 0 I s 0 ) 1 / 2 ) ( α d ) 2 I 0 I s 0 4 α d c 4 c 2 .
γ ˜ = ( γ + k p p ) ( 1 + I pump I s 0 ( 1 + c p ) 2 ) 1 / 2 .
TSNR Sig γ ˜ α p d ( γ + k p p ) ( 1 + I pump I sat ) 1 / 2 - 1 ( 1 + I pump I sat ) , TSNR ( I pump I sat ) α . p . d ( γ + k p p ) I pump 2 I sat , TSNR ( I pump I sat ) α p d ( γ + k p p ) ( I sat I pump ) 1 / 2 .

Metrics