Abstract

One of the problems associated with photopolymers as optical recording media is the thickness variation during the recording process. Different values of shrinkages or swelling are reported in the literature for photopolymers. Furthermore, these variations depend on the spatial frequencies of the gratings stored in the materials. Thickness variations can be measured using different methods: studying the deviation from the Bragg’s angle for nonslanted gratings, using MicroXAM S/N 8038 interferometer, or by the thermomechanical analysis experiments. In a previous paper, we began the characterization of the properties of a polyvinyl alcohol/acrylamide based photopolymer at the lowest end of recorded spatial frequencies. In this work, we continue analyzing the thickness variations of these materials using a reflection interferometer. With this technique we are able to obtain the variations of the layers refractive index and, therefore, a direct estimation of the polymer refractive index.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Márquez, C. Neipp, S. Gallego, M. Ortuño, A. Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003).
    [CrossRef]
  2. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of high-efficiency volume gratings couplers for line focusing,” Appl. Opt. 37, 2278-2287 (1998).
  3. D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003).
  4. W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
  5. Holographic Data Storage, Springer Series in Optical Sciences, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer-Verlag, 2000).
  6. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843(2003).
  7. J. V. Kelly, F. T. O' Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407-406 (2005).
    [CrossRef]
  8. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processing in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
    [CrossRef]
  9. I. Pascual, A. Márquez, A. Beléndez, A. Fimia, J. Campos, and M. J. Yzuel, “Copying low spatial frequency diffraction gratings in photopolymer as phase holograms,” J. Mod. Opt. 47, 1089-1097 (2000).
  10. A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
    [CrossRef]
  11. A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003).
    [CrossRef]
  12. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
    [CrossRef]
  13. J. E. Dietz and N. A. Peppas, “Reaction kinetics and chemical changes during polymerization of multifunctional (meth)acrylates for the production of highly crosslinked polymers used in information storage systems,” Polymer 38, 3767-3781(1997).
    [CrossRef]
  14. T. Endo and F. Sanda, “Ring-opening polymerization, anionic (with expansion in volume),” in Polymeric Materials Encyclopedia (CRC Press, 1996), Vol. 10, pp. 7550-7554.
  15. G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, and D. Levy, “Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording,” Appl. Opt. 43, 4018-4024 (2004).
    [CrossRef]
  16. L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337-1339 (1998).
    [CrossRef]
  17. I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide-based photopolymer surface,” Opt. Express 13, 4878-4889 (2005).
    [CrossRef]
  18. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929-1939 (1994).
    [CrossRef]
  19. S. Piazzolla and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147-1157 (2000).
    [CrossRef]
  20. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
    [CrossRef]
  21. I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
  22. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O' Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
    [CrossRef]
  23. S. Gallego, C. Neipp, M. Otuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 281, 1480-1485 (2008).
  24. C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224, 27-34 (2003).
    [CrossRef]
  25. A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt. 34, 5133-5139 (1995).
  26. P. J. Flory, Principles of Polymer Chemistry (Cornell U. Press, 1953), pp. 161-177.
  27. M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003).
    [CrossRef]
  28. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O' Neill, and J. T. Sheridan, “The impact of inhibition processes during grating formation in photopolymer materials,” Proc. SPIE 5827, 232-243 (2005).
  29. K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
    [CrossRef]
  30. K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
  31. S. Gallego, M. Ortuño, C. Neipp, A. Beléndez, and I. Pascual, “Influence of the fringe visibility on the characteristics of holograms recorded in photopolymer material,” Optik (Jena) 114, 401-406 (2003).
    [CrossRef]
  32. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol-acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
    [CrossRef]

2008

S. Gallego, C. Neipp, M. Otuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 281, 1480-1485 (2008).

2007

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef]

2005

2004

2003

A. Márquez, C. Neipp, S. Gallego, M. Ortuño, A. Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003).
[CrossRef]

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003).

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843(2003).

A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003).
[CrossRef]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224, 27-34 (2003).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Beléndez, and I. Pascual, “Influence of the fringe visibility on the characteristics of holograms recorded in photopolymer material,” Optik (Jena) 114, 401-406 (2003).
[CrossRef]

2000

I. Pascual, A. Márquez, A. Beléndez, A. Fimia, J. Campos, and M. J. Yzuel, “Copying low spatial frequency diffraction gratings in photopolymer as phase holograms,” J. Mod. Opt. 47, 1089-1097 (2000).

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

S. Piazzolla and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147-1157 (2000).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

1998

I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of high-efficiency volume gratings couplers for line focusing,” Appl. Opt. 37, 2278-2287 (1998).

1997

J. E. Dietz and N. A. Peppas, “Reaction kinetics and chemical changes during polymerization of multifunctional (meth)acrylates for the production of highly crosslinked polymers used in information storage systems,” Polymer 38, 3767-3781(1997).
[CrossRef]

1995

1994

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Alvarez, M. L.

Álvarez-Herrero, A.

Anderson, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Arsenault, H. H.

Aubrecht, I.

I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).

Ayer, M.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Bair, H.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Beléndez, A.

S. Gallego, C. Neipp, M. Otuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 281, 1480-1485 (2008).

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol-acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Beléndez, and I. Pascual, “Influence of the fringe visibility on the characteristics of holograms recorded in photopolymer material,” Optik (Jena) 114, 401-406 (2003).
[CrossRef]

A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843(2003).

A. Márquez, C. Neipp, S. Gallego, M. Ortuño, A. Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003).
[CrossRef]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224, 27-34 (2003).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

I. Pascual, A. Márquez, A. Beléndez, A. Fimia, J. Campos, and M. J. Yzuel, “Copying low spatial frequency diffraction gratings in photopolymer as phase holograms,” J. Mod. Opt. 47, 1089-1097 (2000).

Belenguer, T.

Bergeron, A.

Bergman, C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Boyd, C.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Butler, C. J.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003).

Campos, J.

A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003).
[CrossRef]

I. Pascual, A. Márquez, A. Beléndez, A. Fimia, J. Campos, and M. J. Yzuel, “Copying low spatial frequency diffraction gratings in photopolymer as phase holograms,” J. Mod. Opt. 47, 1089-1097 (2000).

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

Close, C. E.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O' Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O' Neill, and J. T. Sheridan, “The impact of inhibition processes during grating formation in photopolymer materials,” Proc. SPIE 5827, 232-243 (2005).

Curtis, K. R.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

del Monte, F.

Dhar, L.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Dietz, J. E.

J. E. Dietz and N. A. Peppas, “Reaction kinetics and chemical changes during polymerization of multifunctional (meth)acrylates for the production of highly crosslinked polymers used in information storage systems,” Polymer 38, 3767-3781(1997).
[CrossRef]

Doucet, M.

Earhart, T.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Endo, T.

T. Endo and F. Sanda, “Ring-opening polymerization, anionic (with expansion in volume),” in Polymeric Materials Encyclopedia (CRC Press, 1996), Vol. 10, pp. 7550-7554.

Fernández, E.

Fimia, A.

A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003).
[CrossRef]

I. Pascual, A. Márquez, A. Beléndez, A. Fimia, J. Campos, and M. J. Yzuel, “Copying low spatial frequency diffraction gratings in photopolymer as phase holograms,” J. Mod. Opt. 47, 1089-1097 (2000).

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

Flory, P. J.

P. J. Flory, Principles of Polymer Chemistry (Cornell U. Press, 1953), pp. 161-177.

Gagnon, F.

Gallego, S.

S. Gallego, C. Neipp, M. Otuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 281, 1480-1485 (2008).

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef]

J. V. Kelly, F. T. O' Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407-406 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O' Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol-acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Beléndez, and I. Pascual, “Influence of the fringe visibility on the characteristics of holograms recorded in photopolymer material,” Optik (Jena) 114, 401-406 (2003).
[CrossRef]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224, 27-34 (2003).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843(2003).

A. Márquez, C. Neipp, S. Gallego, M. Ortuño, A. Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003).
[CrossRef]

García, C.

Gauvin, J.

Gaylord, T. K.

Gingras, D.

Gleeson, M. R.

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O' Neill, and J. T. Sheridan, “The impact of inhibition processes during grating formation in photopolymer materials,” Proc. SPIE 5827, 232-243 (2005).

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O' Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
[CrossRef]

Glytsis, E. N.

Hertrich, G.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Hill, A. J.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Howard, R.

Howard, R. G.

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).

Jallapuram, R.

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processing in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef]

Jenkins, B. K.

Kelly, J. V.

Koudela, I.

I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).

Lawrence, J. R.

Levy, D.

Loechel, W.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Malang, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Márquez, A.

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol-acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003).
[CrossRef]

A. Márquez, C. Neipp, S. Gallego, M. Ortuño, A. Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003).
[CrossRef]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224, 27-34 (2003).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

I. Pascual, A. Márquez, A. Beléndez, A. Fimia, J. Campos, and M. J. Yzuel, “Copying low spatial frequency diffraction gratings in photopolymer as phase holograms,” J. Mod. Opt. 47, 1089-1097 (2000).

Martin, S.

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).

I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide-based photopolymer surface,” Opt. Express 13, 4878-4889 (2005).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processing in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef]

Méndez, D.

Mihaylova, E.

Miller, M.

I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Naydenova, I.

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).

I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide-based photopolymer surface,” Opt. Express 13, 4878-4889 (2005).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processing in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef]

Neipp, C.

S. Gallego, C. Neipp, M. Otuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 281, 1480-1485 (2008).

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O' Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
[CrossRef]

J. V. Kelly, F. T. O' Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407-406 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol-acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Beléndez, and I. Pascual, “Influence of the fringe visibility on the characteristics of holograms recorded in photopolymer material,” Optik (Jena) 114, 401-406 (2003).
[CrossRef]

A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003).
[CrossRef]

A. Márquez, C. Neipp, S. Gallego, M. Ortuño, A. Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843(2003).

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224, 27-34 (2003).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003).
[CrossRef]

O' Neill, F. T.

Ortuño, M.

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef]

J. V. Kelly, F. T. O' Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407-406 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol-acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Beléndez, and I. Pascual, “Influence of the fringe visibility on the characteristics of holograms recorded in photopolymer material,” Optik (Jena) 114, 401-406 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843(2003).

A. Márquez, C. Neipp, S. Gallego, M. Ortuño, A. Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003).
[CrossRef]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224, 27-34 (2003).
[CrossRef]

Otuño, M.

S. Gallego, C. Neipp, M. Otuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 281, 1480-1485 (2008).

Pane, M.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Parris, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Pascual, I.

S. Gallego, C. Neipp, M. Otuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 281, 1480-1485 (2008).

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol-acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Beléndez, and I. Pascual, “Influence of the fringe visibility on the characteristics of holograms recorded in photopolymer material,” Optik (Jena) 114, 401-406 (2003).
[CrossRef]

A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843(2003).

A. Márquez, C. Neipp, S. Gallego, M. Ortuño, A. Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003).
[CrossRef]

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224, 27-34 (2003).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

I. Pascual, A. Márquez, A. Beléndez, A. Fimia, J. Campos, and M. J. Yzuel, “Copying low spatial frequency diffraction gratings in photopolymer as phase holograms,” J. Mod. Opt. 47, 1089-1097 (2000).

Pavani, K.

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).

Peppas, N. A.

J. E. Dietz and N. A. Peppas, “Reaction kinetics and chemical changes during polymerization of multifunctional (meth)acrylates for the production of highly crosslinked polymers used in information storage systems,” Polymer 38, 3767-3781(1997).
[CrossRef]

Piazzolla, S.

Raguin, D. H.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003).

Ramos, G.

Riley, B.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Sanda, F.

T. Endo and F. Sanda, “Ring-opening polymerization, anionic (with expansion in volume),” in Polymeric Materials Encyclopedia (CRC Press, 1996), Vol. 10, pp. 7550-7554.

Schilling, M.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Schones, M. G.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Schultz, S. M.

Sheridan, J. T.

Shuman, C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Stanhope, C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Tackitt, M. C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Toal, V.

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).

I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide-based photopolymer surface,” Opt. Express 13, 4878-4889 (2005).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processing in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef]

Waldman, D. A.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003).

Wilson, W. L.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Wolfgang, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

Wysocki, T. L.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Yzuel, M. J.

A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

I. Pascual, A. Márquez, A. Beléndez, A. Fimia, J. Campos, and M. J. Yzuel, “Copying low spatial frequency diffraction gratings in photopolymer as phase holograms,” J. Mod. Opt. 47, 1089-1097 (2000).

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Appl. Opt.

S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of high-efficiency volume gratings couplers for line focusing,” Appl. Opt. 37, 2278-2287 (1998).

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processing in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef]

G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, and D. Levy, “Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording,” Appl. Opt. 43, 4018-4024 (2004).
[CrossRef]

A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, “Phase calibration and applications of a liquid-crystal spatial light modulator,” Appl. Opt. 34, 5133-5139 (1995).

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of polyvinyl alcohol-acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

Appl. Phys. Lett.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

J. Mod. Opt.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

I. Pascual, A. Márquez, A. Beléndez, A. Fimia, J. Campos, and M. J. Yzuel, “Copying low spatial frequency diffraction gratings in photopolymer as phase holograms,” J. Mod. Opt. 47, 1089-1097 (2000).

I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).

J. Opt. A Pure Appl. Opt.

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

A. Márquez, C. Neipp, A. Beléndez, J. Campos, I. Pascual, M. J. Yzuel, and A. Fimia, “Low spatial frequency characterization of holographic recording materials applied to correlation,” J. Opt. A Pure Appl. Opt. 5, S175-S182 (2003).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).

S. Gallego, C. Neipp, M. Otuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 281, 1480-1485 (2008).

C. Neipp, S. Gallego, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Characterization of a PVA/acrylamide photopolymer. Influence of a cross-linking monomer in the final characteristics of the hologram,” Opt. Commun. 224, 27-34 (2003).
[CrossRef]

Opt. Eng.

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Optik (Jena)

S. Gallego, M. Ortuño, C. Neipp, A. Beléndez, and I. Pascual, “Influence of the fringe visibility on the characteristics of holograms recorded in photopolymer material,” Optik (Jena) 114, 401-406 (2003).
[CrossRef]

Polymer

J. E. Dietz and N. A. Peppas, “Reaction kinetics and chemical changes during polymerization of multifunctional (meth)acrylates for the production of highly crosslinked polymers used in information storage systems,” Polymer 38, 3767-3781(1997).
[CrossRef]

Proc. SPIE

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003).

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the in-phase technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O' Neill, and J. T. Sheridan, “The impact of inhibition processes during grating formation in photopolymer materials,” Proc. SPIE 5827, 232-243 (2005).

Other

P. J. Flory, Principles of Polymer Chemistry (Cornell U. Press, 1953), pp. 161-177.

Holographic Data Storage, Springer Series in Optical Sciences, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer-Verlag, 2000).

T. Endo and F. Sanda, “Ring-opening polymerization, anionic (with expansion in volume),” in Polymeric Materials Encyclopedia (CRC Press, 1996), Vol. 10, pp. 7550-7554.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. The recording material is exposed with the green laser beam ( λ = 532 nm ) and the phase shift is measured with the red beam ( λ = 633 nm ). P is polarizer; WP is wave plate; MO is microscope objective.

Fig. 2
Fig. 2

(a) Phase shift as a function of the exposure time for layers without crosslinker using a reflection interferometer. (b) Layer shrinkage as a function of the exposure time for layers without crosslinker.

Fig. 3
Fig. 3

(a) Phase shift as a function of the exposure time for layers without crosslinker using a transmission interferometer. (b) Refractive index shift as a function of the exposure time for the new solid layer without crosslinker. (c) Refractive index shift as a function of the exposure time for the whole layer (solid layer and holes) with crosslinker.

Fig. 4
Fig. 4

(a) Phase shift as a function of the exposure time for layers with crosslinker using a reflection interferometer. (b) Shrinkage as a function of the exposure time for layers with crosslinker.

Fig. 5
Fig. 5

(a) Phase shift as a function of the exposure time for layers with crosslinker using a transmission interferometer. (b) Refractive index shift as a function of the exposure time for layers with crosslinker when only the new solid layer is considered. (c) Refractive index shift as a function of the exposure time for layers with crosslinker when we consider the whole layer (solid layers and holes).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ d = Δ Φ λ cos α 4 π ,
ϕ ( m ) + ϕ ( p ) + ϕ ( h ) + ϕ ( b ) = 1
n 2 + 1 n 2 + 2 = n m 2 1 n m 2 + 2 ϕ ( m ) + n p 2 1 n p 2 + 2 ϕ ( p ) + n b 2 1 n b 2 + 2 ϕ ( b ) + n h 2 1 n h 2 + 2 ϕ ( h ) ,
n 2 + 1 n 2 + 2 = ( n m 2 1 n m 2 + 2 n b 2 1 n b 2 + 2 ) ϕ ( m ) + ( n p 2 1 n p 2 + 2 n b 2 1 n b 2 + 2 ) ϕ ( p ) + ( n h 2 1 n h 2 + 2 n b 2 1 n b 2 + 2 ) ϕ ( h ) + n b 2 1 n b 2 + 2 .
n 1 = ( n dark 2 + 2 ) 2 6 n dark [ ( n m 2 1 n m 2 + 2 n b 2 1 n b 2 + 2 ) ϕ 1 ( m ) + ( n p 2 1 n p 2 + 2 n b 2 1 n b 2 + 2 ) ϕ 1 ( p ) + ( n b 2 1 n b 2 + 2 ) ϕ 1 ( h ) ] ,
Δ Φ t = 2 π λ d ( t ) · Δ n cos α Δ Φ Shr ,
Δ Φ Shr = 2 π λ Δ d ( n dark cos α cos α ) ,
Δ n = λ Δ Φ t cos α 2 π d ( t ) + Δ d d ( t ) ( n dark cos α cos α ) .
Δ n w = λ Δ Φ t cos α 2 π d 0 .
n p 2 1 n p 2 + 2 = n b 2 1 n b 2 + 2 + 1 ϕ f ( p ) [ ( n m 2 1 n m 2 + 2 n b 2 1 n b 2 + 2 ) ϕ i ( m ) + n s 2 + 1 n s 2 + 2 n dark 2 1 n dark 2 + 2 ] .
n p 2 1 n p 2 + 2 = 1 ϕ f ( p ) [ 6 n dark ( n dark 2 + 2 ) 2 n 1 + ( n m 2 1 n m 2 + 2 n b 2 1 n b 2 + 2 ) ϕ i ( m ) ] + n b 2 1 n b 2 + 2 ,

Metrics