Abstract

A novel approach for the fabrication of diffractive optical elements is described. This approach is based on an interferometric phase contrast method that transforms a complex object wavefront into an intensity pattern. The resulting intensity pattern is used to expose a photoresist layer on a substrate. After development, a diffractive phase object with an on-axis diffraction pattern is achieved. We show that the interferometric phase contrast method allows a precise control of the resulting intensity pattern. An array of blazed Fresnel lenses is realized in photoresist by using kinoform or detour-phase computer holograms for the interferometric phase contrast setup.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 2003).
    [CrossRef]
  2. R. Brunner, R. Steiner, H. J. Dobschal, and K. Rudolf, “Hybrid diffractive-refractive optics: opportunities and technologies to realize complex optical imaging systems,” Glass Sci. Technol. 76, 91-96 (2003).
  3. R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Proc. SPIE 5183, 47-55 (2003).
    [CrossRef]
  4. W. W. Ng, C. S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Electron Devices 25, 1193-1200 (1978)
    [CrossRef]
  5. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).
  6. J. A. Britten, M. D. Perry, B. W. Shore, and R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Opt. Lett. 21, 540-542 (1996)
    [CrossRef] [PubMed]
  7. A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997).
    [CrossRef]
  8. M. Teschke and S. Sinzinger, “Modified phase contrast for recording of holographic optical elements,” Opt. Lett. 32, 2067-2069 (2007).
    [CrossRef] [PubMed]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  10. F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
    [CrossRef] [PubMed]
  11. D. Malacara, Optical Shop Testing (Wiley-VCH, 1992).
  12. W. Lauterborn, T. Kurz, and M. Wiesenfeldt, Kohärente Optik (Springer-Verlag, 1993).
    [CrossRef]
  13. J. Glückstad and P. C. Mogensen, “Optimal phase contrast imaging in common path interferometry,” Appl. Opt. 40, 268-282 (2001).
    [CrossRef]
  14. S. Osten, S. Krüger, and A. Steinhoff, “Spatial light modulators based on reflective microdisplays,” Technisches Messen 73, 149-156 (2006).
    [CrossRef]
  15. Allresist GmbH, http://www.allresist.de.
  16. M. Hofmann, S. Stoebenau, and S. Leopold, Department of Optical Engineering, Technische Universität Ilmenau, P.O. Box 10 05 65, 98684 Ilmenau, Germany, are preparing a manuscript to be called “Characterization of a photoresist for analog lithography in the visible range.”
  17. S. Krüger, S. Osten, and G. Wernicke, “Reflective spatial light modulators improve digital holography,” http://www.holoeye.com/publications1.html.
  18. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967-969 (1966).
    [CrossRef] [PubMed]
  19. A. W. Lohmann and S. Sinzinger, “Graphic codes for computer holography,” Appl. Opt. 34, 3172-3178 (1995).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

S. Osten, S. Krüger, and A. Steinhoff, “Spatial light modulators based on reflective microdisplays,” Technisches Messen 73, 149-156 (2006).
[CrossRef]

2003 (2)

R. Brunner, R. Steiner, H. J. Dobschal, and K. Rudolf, “Hybrid diffractive-refractive optics: opportunities and technologies to realize complex optical imaging systems,” Glass Sci. Technol. 76, 91-96 (2003).

R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Proc. SPIE 5183, 47-55 (2003).
[CrossRef]

2001 (1)

1997 (1)

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997).
[CrossRef]

1996 (1)

1995 (1)

1978 (1)

W. W. Ng, C. S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Electron Devices 25, 1193-1200 (1978)
[CrossRef]

1966 (1)

1955 (1)

F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
[CrossRef] [PubMed]

Boyd, R. D.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997).
[CrossRef]

J. A. Britten, M. D. Perry, B. W. Shore, and R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Opt. Lett. 21, 540-542 (1996)
[CrossRef] [PubMed]

Britten, J. A.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997).
[CrossRef]

J. A. Britten, M. D. Perry, B. W. Shore, and R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Opt. Lett. 21, 540-542 (1996)
[CrossRef] [PubMed]

Brown, B. R.

Brunner, R.

R. Brunner, R. Steiner, H. J. Dobschal, and K. Rudolf, “Hybrid diffractive-refractive optics: opportunities and technologies to realize complex optical imaging systems,” Glass Sci. Technol. 76, 91-96 (2003).

R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Proc. SPIE 5183, 47-55 (2003).
[CrossRef]

Burkhardt, M.

R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Proc. SPIE 5183, 47-55 (2003).
[CrossRef]

Dobschal, H. J.

R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Proc. SPIE 5183, 47-55 (2003).
[CrossRef]

R. Brunner, R. Steiner, H. J. Dobschal, and K. Rudolf, “Hybrid diffractive-refractive optics: opportunities and technologies to realize complex optical imaging systems,” Glass Sci. Technol. 76, 91-96 (2003).

Fernandez, A.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997).
[CrossRef]

Glückstad, J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Hawryluk, A. M.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997).
[CrossRef]

Helgert, M.

R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Proc. SPIE 5183, 47-55 (2003).
[CrossRef]

Hofmann, M.

M. Hofmann, S. Stoebenau, and S. Leopold, Department of Optical Engineering, Technische Universität Ilmenau, P.O. Box 10 05 65, 98684 Ilmenau, Germany, are preparing a manuscript to be called “Characterization of a photoresist for analog lithography in the visible range.”

Hong, C. S.

W. W. Ng, C. S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Electron Devices 25, 1193-1200 (1978)
[CrossRef]

Jahns, J.

S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 2003).
[CrossRef]

Kania, D. R.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997).
[CrossRef]

Krüger, S.

S. Osten, S. Krüger, and A. Steinhoff, “Spatial light modulators based on reflective microdisplays,” Technisches Messen 73, 149-156 (2006).
[CrossRef]

S. Krüger, S. Osten, and G. Wernicke, “Reflective spatial light modulators improve digital holography,” http://www.holoeye.com/publications1.html.

Kurz, T.

W. Lauterborn, T. Kurz, and M. Wiesenfeldt, Kohärente Optik (Springer-Verlag, 1993).
[CrossRef]

Lauterborn, W.

W. Lauterborn, T. Kurz, and M. Wiesenfeldt, Kohärente Optik (Springer-Verlag, 1993).
[CrossRef]

Leopold, S.

M. Hofmann, S. Stoebenau, and S. Leopold, Department of Optical Engineering, Technische Universität Ilmenau, P.O. Box 10 05 65, 98684 Ilmenau, Germany, are preparing a manuscript to be called “Characterization of a photoresist for analog lithography in the visible range.”

Lohmann, A. W.

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley-VCH, 1992).

Martin, D.

R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Proc. SPIE 5183, 47-55 (2003).
[CrossRef]

Mogensen, P. C.

Ng, W. W.

W. W. Ng, C. S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Electron Devices 25, 1193-1200 (1978)
[CrossRef]

Nguyen, H. T.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997).
[CrossRef]

Osten, S.

S. Osten, S. Krüger, and A. Steinhoff, “Spatial light modulators based on reflective microdisplays,” Technisches Messen 73, 149-156 (2006).
[CrossRef]

S. Krüger, S. Osten, and G. Wernicke, “Reflective spatial light modulators improve digital holography,” http://www.holoeye.com/publications1.html.

Perry, M. D.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997).
[CrossRef]

J. A. Britten, M. D. Perry, B. W. Shore, and R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Opt. Lett. 21, 540-542 (1996)
[CrossRef] [PubMed]

Rudolf, K.

R. Brunner, R. Steiner, H. J. Dobschal, and K. Rudolf, “Hybrid diffractive-refractive optics: opportunities and technologies to realize complex optical imaging systems,” Glass Sci. Technol. 76, 91-96 (2003).

Shore, B. W.

Sinzinger, S.

Steiner, R.

R. Brunner, R. Steiner, H. J. Dobschal, and K. Rudolf, “Hybrid diffractive-refractive optics: opportunities and technologies to realize complex optical imaging systems,” Glass Sci. Technol. 76, 91-96 (2003).

R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Proc. SPIE 5183, 47-55 (2003).
[CrossRef]

Steinhoff, A.

S. Osten, S. Krüger, and A. Steinhoff, “Spatial light modulators based on reflective microdisplays,” Technisches Messen 73, 149-156 (2006).
[CrossRef]

Stoebenau, S.

M. Hofmann, S. Stoebenau, and S. Leopold, Department of Optical Engineering, Technische Universität Ilmenau, P.O. Box 10 05 65, 98684 Ilmenau, Germany, are preparing a manuscript to be called “Characterization of a photoresist for analog lithography in the visible range.”

Teschke, M.

Turunen, J.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).

Wernicke, G.

S. Krüger, S. Osten, and G. Wernicke, “Reflective spatial light modulators improve digital holography,” http://www.holoeye.com/publications1.html.

Wiesenfeldt, M.

W. Lauterborn, T. Kurz, and M. Wiesenfeldt, Kohärente Optik (Springer-Verlag, 1993).
[CrossRef]

Wyrowski, F.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).

Yariv, A.

W. W. Ng, C. S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Electron Devices 25, 1193-1200 (1978)
[CrossRef]

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
[CrossRef] [PubMed]

Appl. Opt. (3)

Glass Sci. Technol. (1)

R. Brunner, R. Steiner, H. J. Dobschal, and K. Rudolf, “Hybrid diffractive-refractive optics: opportunities and technologies to realize complex optical imaging systems,” Glass Sci. Technol. 76, 91-96 (2003).

IEEE Trans. Electron Devices (1)

W. W. Ng, C. S. Hong, and A. Yariv, “Holographic interference lithography for integrated optics,” IEEE Trans. Electron Devices 25, 1193-1200 (1978)
[CrossRef]

J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. (1)

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 15, 729-735 (1997).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “Universal grating design for pulse stretching and compression in the 800-1100 nm range,” Proc. SPIE 5183, 47-55 (2003).
[CrossRef]

Science (1)

F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
[CrossRef] [PubMed]

Technisches Messen (1)

S. Osten, S. Krüger, and A. Steinhoff, “Spatial light modulators based on reflective microdisplays,” Technisches Messen 73, 149-156 (2006).
[CrossRef]

Other (8)

Allresist GmbH, http://www.allresist.de.

M. Hofmann, S. Stoebenau, and S. Leopold, Department of Optical Engineering, Technische Universität Ilmenau, P.O. Box 10 05 65, 98684 Ilmenau, Germany, are preparing a manuscript to be called “Characterization of a photoresist for analog lithography in the visible range.”

S. Krüger, S. Osten, and G. Wernicke, “Reflective spatial light modulators improve digital holography,” http://www.holoeye.com/publications1.html.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

D. Malacara, Optical Shop Testing (Wiley-VCH, 1992).

W. Lauterborn, T. Kurz, and M. Wiesenfeldt, Kohärente Optik (Springer-Verlag, 1993).
[CrossRef]

S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Phase contrast imaging by common path interferometry. (a) The Fourier filter affects the zeroth order in phase (θ) and amplitude (B). The affected wavefront is treated as a reference wavefront that generates the intensity pattern in the observation plane. (b) Intensity profile of the zeroth order. Only a part of zeroth order is filtered [13].

Fig. 2
Fig. 2

Interferometric phase contrast setup: (a) phase pattern visualized by a gray-level image, (b) intensity pattern of the OWF in the observation without the zeroth order RWF, (c) zeroth order OWF and RWF before the alignment, (d) zeroth order of the synthetic RWF, (e) extinction of the zeroth order, and (f) intensity pattern in the observation plane obtained with the synthetic RWF δ = π .

Fig. 3
Fig. 3

Ambiguity imaging of phase disturbance: (a) blazed Fresnel lens and (b) sinusoidal imaging of the blazed Fresnel lens.

Fig. 4
Fig. 4

Adaption of the phase disturbance φ ( x , y ) to the desired intensity.

Fig. 5
Fig. 5

Imaging of the adapted phase disturbance: (a) adapted blazed Fresnel lens and (b) blazed Fresnel lens.

Fig. 6
Fig. 6

Fabrication of an array of blazed Fresnel lenses using a LCoS display addressed by kinoform: (a) intensity pattern in the observation plane, (b) picture of the developed photoresist recorded by the profilometer camera, and (c) surface profile of the photoresist after development.

Fig. 7
Fig. 7

Kinoform in contrast to detour-phase hologram: (a) adapted blazed Fresnel lens, (b) magnified 11 × 11 pixels detail of (a), (c) transformation of (b) to a detour-phase hologram with 286 × 286 pixels, and (d) two different detour-phase holograms deposited on a glass wafer.

Fig. 8
Fig. 8

Application of the interferometric phase contrast setup with the detour-phase hologram.

Fig. 9
Fig. 9

Fabrication of an array of blazed Fresnel lenses using a detour-phase hologram: (a) intensity pattern in the observation plane, (b) picture of the developed photoresist recorded by the profilometer camera, and (c) surface profile of the photoresist after development.

Fig. 10
Fig. 10

DOE with a ring in a frame diffraction pattern.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

circ ( r Δ r ) = { 1 x 2 + y 2 Δ r , 0 otherwise .
U ( x , y ) = circ ( r Δ r ) ( A exp [ i ϕ ( x , y ) ] + exp [ i δ ] ) ,
I ( x , y ) = circ ( r Δ r ) 2 ( 1 + A exp [ i ϕ ( x , y ) ] exp [ i δ ] + A exp [ i ϕ ( x , y ) ] exp [ i δ ] + A 2 ) = circ ( r Δ r ) 2 ( 1 + A 2 + 2 A cos [ ϕ ( x , y ) δ ] ) .
I ( x , y ) = circ ( r Δ r ) 2 ( 2 + 2 cos [ ϕ ( x , y ) δ ] ) .
I ( x , y ) = circ ( r Δ r ) 2 ( 2 π ϕ 1 ) .
2 π ϕ 1 = 2 ( 1 cos ϕ 2 ) .
ϕ 2 = arccos ( 1 ϕ 1 π ) .
I ( x , y ) = circ ( r Δ r ) 2 ( 2 + 2 cos [ ϕ 2 ( x , y ) ] ) .
I ( x , y ) = circ ( r Δ r ) 2 ( 2 π ϕ 1 + 4 ) .
ϕ 2 = arccos ( 1 ϕ 1 π ) .

Metrics