Abstract

We have designed what we believe to be new hybrid-type attenuated phase-shift masks for extreme-ultraviolet optical lithography by use of a Fabry–Perot interference filter. The designs for the attenuated phase-shift masks show a smaller step height for less geometric shadow effects than additive- and subtractive-type attenuated phase-shift masks, a contrast higher than 94% for both deep-ultraviolet and extreme-ultraviolet wavelength regimes, and a 180° phase-shift in the extreme-ultraviolet wavelength regime.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. International Technology Roadmap for Semiconductors 2006 Update (Semiconductor Industry Association, 2006).
  2. S.-I. Han, E. Weisbrod, J. R. Wasson, R. Gregory, Q. Xie, and P. J. S. Mangat, "Development of phase shift masks for extreme ultra violet lithography and optical evaluation of phase shift materials," Proc. SPIE 5374, 261-270 (2004).
    [CrossRef]
  3. K. Otaki, "Asymmetric properties of the aerial image in extreme ultraviolet lithography," Jpn. J. Appl. Phys. 39, 6819-6826 (2000).
    [CrossRef]
  4. A. M. Goethals, R. Jonckheere, G. F. Lorusso, J. Hermans, and F. Van Roey, "EUV lithography program at IMEC," Proc. SPIE 6517, 651709 (2007).
    [CrossRef]
  5. H. L. Chen, H. C. Cheng, T. S. Ko, F. H. Ko, and T. C. Chu, "High reflectance of reflective-type attenuated-phase-shifting masks for extreme ultraviolet lithography with high inspection contrast in deep ultraviolet regimes," J. Vac. Sci. Technol. B 22, 3049-3052 (2004).
    [CrossRef]
  6. M. Sugawara, A. Chiba, and I. Nishiyama, "Effect of incident angle of off-axis illumination on pattern printability in extreme ultraviolet lithography," J. Vac. Sci. Technol. B 21, 2701-2705 (2003).
    [CrossRef]
  7. S.-I. Han, E. Weisbrod, Q. Xie, and P. J. S. Mangat, "Design and method of fabricating phase-shift masks for extreme ultraviolet lithography by partial etching into the EUV multilayer mirror," Proc. SPIE 5037, 314-330 (2003).
    [CrossRef]
  8. B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92," At. Data Nucl. Data Tables 54, 181-342 (1993), see also http://www-cxro.lbl.gov/.
    [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  10. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  11. B. G. Eynon and B. Wu, Photomask Fabrication Technology (McGraw-Hill, 2005).
  12. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
    [CrossRef]

2007 (1)

A. M. Goethals, R. Jonckheere, G. F. Lorusso, J. Hermans, and F. Van Roey, "EUV lithography program at IMEC," Proc. SPIE 6517, 651709 (2007).
[CrossRef]

2005 (1)

B. G. Eynon and B. Wu, Photomask Fabrication Technology (McGraw-Hill, 2005).

2004 (2)

H. L. Chen, H. C. Cheng, T. S. Ko, F. H. Ko, and T. C. Chu, "High reflectance of reflective-type attenuated-phase-shifting masks for extreme ultraviolet lithography with high inspection contrast in deep ultraviolet regimes," J. Vac. Sci. Technol. B 22, 3049-3052 (2004).
[CrossRef]

S.-I. Han, E. Weisbrod, J. R. Wasson, R. Gregory, Q. Xie, and P. J. S. Mangat, "Development of phase shift masks for extreme ultra violet lithography and optical evaluation of phase shift materials," Proc. SPIE 5374, 261-270 (2004).
[CrossRef]

2003 (2)

M. Sugawara, A. Chiba, and I. Nishiyama, "Effect of incident angle of off-axis illumination on pattern printability in extreme ultraviolet lithography," J. Vac. Sci. Technol. B 21, 2701-2705 (2003).
[CrossRef]

S.-I. Han, E. Weisbrod, Q. Xie, and P. J. S. Mangat, "Design and method of fabricating phase-shift masks for extreme ultraviolet lithography by partial etching into the EUV multilayer mirror," Proc. SPIE 5037, 314-330 (2003).
[CrossRef]

2001 (1)

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

2000 (1)

K. Otaki, "Asymmetric properties of the aerial image in extreme ultraviolet lithography," Jpn. J. Appl. Phys. 39, 6819-6826 (2000).
[CrossRef]

1998 (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92," At. Data Nucl. Data Tables 54, 181-342 (1993), see also http://www-cxro.lbl.gov/.
[CrossRef]

1988 (1)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Chen, H. L.

H. L. Chen, H. C. Cheng, T. S. Ko, F. H. Ko, and T. C. Chu, "High reflectance of reflective-type attenuated-phase-shifting masks for extreme ultraviolet lithography with high inspection contrast in deep ultraviolet regimes," J. Vac. Sci. Technol. B 22, 3049-3052 (2004).
[CrossRef]

Cheng, H. C.

H. L. Chen, H. C. Cheng, T. S. Ko, F. H. Ko, and T. C. Chu, "High reflectance of reflective-type attenuated-phase-shifting masks for extreme ultraviolet lithography with high inspection contrast in deep ultraviolet regimes," J. Vac. Sci. Technol. B 22, 3049-3052 (2004).
[CrossRef]

Chiba, A.

M. Sugawara, A. Chiba, and I. Nishiyama, "Effect of incident angle of off-axis illumination on pattern printability in extreme ultraviolet lithography," J. Vac. Sci. Technol. B 21, 2701-2705 (2003).
[CrossRef]

Chu, T. C.

H. L. Chen, H. C. Cheng, T. S. Ko, F. H. Ko, and T. C. Chu, "High reflectance of reflective-type attenuated-phase-shifting masks for extreme ultraviolet lithography with high inspection contrast in deep ultraviolet regimes," J. Vac. Sci. Technol. B 22, 3049-3052 (2004).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92," At. Data Nucl. Data Tables 54, 181-342 (1993), see also http://www-cxro.lbl.gov/.
[CrossRef]

Eynon, B. G.

B. G. Eynon and B. Wu, Photomask Fabrication Technology (McGraw-Hill, 2005).

Goethals, A. M.

A. M. Goethals, R. Jonckheere, G. F. Lorusso, J. Hermans, and F. Van Roey, "EUV lithography program at IMEC," Proc. SPIE 6517, 651709 (2007).
[CrossRef]

Gregory, R.

S.-I. Han, E. Weisbrod, J. R. Wasson, R. Gregory, Q. Xie, and P. J. S. Mangat, "Development of phase shift masks for extreme ultra violet lithography and optical evaluation of phase shift materials," Proc. SPIE 5374, 261-270 (2004).
[CrossRef]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92," At. Data Nucl. Data Tables 54, 181-342 (1993), see also http://www-cxro.lbl.gov/.
[CrossRef]

Han, S.-I.

S.-I. Han, E. Weisbrod, J. R. Wasson, R. Gregory, Q. Xie, and P. J. S. Mangat, "Development of phase shift masks for extreme ultra violet lithography and optical evaluation of phase shift materials," Proc. SPIE 5374, 261-270 (2004).
[CrossRef]

S.-I. Han, E. Weisbrod, Q. Xie, and P. J. S. Mangat, "Design and method of fabricating phase-shift masks for extreme ultraviolet lithography by partial etching into the EUV multilayer mirror," Proc. SPIE 5037, 314-330 (2003).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92," At. Data Nucl. Data Tables 54, 181-342 (1993), see also http://www-cxro.lbl.gov/.
[CrossRef]

Hermans, J.

A. M. Goethals, R. Jonckheere, G. F. Lorusso, J. Hermans, and F. Van Roey, "EUV lithography program at IMEC," Proc. SPIE 6517, 651709 (2007).
[CrossRef]

Jonckheere, R.

A. M. Goethals, R. Jonckheere, G. F. Lorusso, J. Hermans, and F. Van Roey, "EUV lithography program at IMEC," Proc. SPIE 6517, 651709 (2007).
[CrossRef]

Ko, F. H.

H. L. Chen, H. C. Cheng, T. S. Ko, F. H. Ko, and T. C. Chu, "High reflectance of reflective-type attenuated-phase-shifting masks for extreme ultraviolet lithography with high inspection contrast in deep ultraviolet regimes," J. Vac. Sci. Technol. B 22, 3049-3052 (2004).
[CrossRef]

Ko, T. S.

H. L. Chen, H. C. Cheng, T. S. Ko, F. H. Ko, and T. C. Chu, "High reflectance of reflective-type attenuated-phase-shifting masks for extreme ultraviolet lithography with high inspection contrast in deep ultraviolet regimes," J. Vac. Sci. Technol. B 22, 3049-3052 (2004).
[CrossRef]

Lorusso, G. F.

A. M. Goethals, R. Jonckheere, G. F. Lorusso, J. Hermans, and F. Van Roey, "EUV lithography program at IMEC," Proc. SPIE 6517, 651709 (2007).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

Mangat, P. J. S.

S.-I. Han, E. Weisbrod, J. R. Wasson, R. Gregory, Q. Xie, and P. J. S. Mangat, "Development of phase shift masks for extreme ultra violet lithography and optical evaluation of phase shift materials," Proc. SPIE 5374, 261-270 (2004).
[CrossRef]

S.-I. Han, E. Weisbrod, Q. Xie, and P. J. S. Mangat, "Design and method of fabricating phase-shift masks for extreme ultraviolet lithography by partial etching into the EUV multilayer mirror," Proc. SPIE 5037, 314-330 (2003).
[CrossRef]

Nishiyama, I.

M. Sugawara, A. Chiba, and I. Nishiyama, "Effect of incident angle of off-axis illumination on pattern printability in extreme ultraviolet lithography," J. Vac. Sci. Technol. B 21, 2701-2705 (2003).
[CrossRef]

Otaki, K.

K. Otaki, "Asymmetric properties of the aerial image in extreme ultraviolet lithography," Jpn. J. Appl. Phys. 39, 6819-6826 (2000).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Sugawara, M.

M. Sugawara, A. Chiba, and I. Nishiyama, "Effect of incident angle of off-axis illumination on pattern printability in extreme ultraviolet lithography," J. Vac. Sci. Technol. B 21, 2701-2705 (2003).
[CrossRef]

Van Roey, F.

A. M. Goethals, R. Jonckheere, G. F. Lorusso, J. Hermans, and F. Van Roey, "EUV lithography program at IMEC," Proc. SPIE 6517, 651709 (2007).
[CrossRef]

Wasson, J. R.

S.-I. Han, E. Weisbrod, J. R. Wasson, R. Gregory, Q. Xie, and P. J. S. Mangat, "Development of phase shift masks for extreme ultra violet lithography and optical evaluation of phase shift materials," Proc. SPIE 5374, 261-270 (2004).
[CrossRef]

Weisbrod, E.

S.-I. Han, E. Weisbrod, J. R. Wasson, R. Gregory, Q. Xie, and P. J. S. Mangat, "Development of phase shift masks for extreme ultra violet lithography and optical evaluation of phase shift materials," Proc. SPIE 5374, 261-270 (2004).
[CrossRef]

S.-I. Han, E. Weisbrod, Q. Xie, and P. J. S. Mangat, "Design and method of fabricating phase-shift masks for extreme ultraviolet lithography by partial etching into the EUV multilayer mirror," Proc. SPIE 5037, 314-330 (2003).
[CrossRef]

Wu, B.

B. G. Eynon and B. Wu, Photomask Fabrication Technology (McGraw-Hill, 2005).

Xie, Q.

S.-I. Han, E. Weisbrod, J. R. Wasson, R. Gregory, Q. Xie, and P. J. S. Mangat, "Development of phase shift masks for extreme ultra violet lithography and optical evaluation of phase shift materials," Proc. SPIE 5374, 261-270 (2004).
[CrossRef]

S.-I. Han, E. Weisbrod, Q. Xie, and P. J. S. Mangat, "Design and method of fabricating phase-shift masks for extreme ultraviolet lithography by partial etching into the EUV multilayer mirror," Proc. SPIE 5037, 314-330 (2003).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, "X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92," At. Data Nucl. Data Tables 54, 181-342 (1993), see also http://www-cxro.lbl.gov/.
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. Sugawara, A. Chiba, and I. Nishiyama, "Effect of incident angle of off-axis illumination on pattern printability in extreme ultraviolet lithography," J. Vac. Sci. Technol. B 21, 2701-2705 (2003).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H. L. Chen, H. C. Cheng, T. S. Ko, F. H. Ko, and T. C. Chu, "High reflectance of reflective-type attenuated-phase-shifting masks for extreme ultraviolet lithography with high inspection contrast in deep ultraviolet regimes," J. Vac. Sci. Technol. B 22, 3049-3052 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Otaki, "Asymmetric properties of the aerial image in extreme ultraviolet lithography," Jpn. J. Appl. Phys. 39, 6819-6826 (2000).
[CrossRef]

Proc. SPIE (3)

A. M. Goethals, R. Jonckheere, G. F. Lorusso, J. Hermans, and F. Van Roey, "EUV lithography program at IMEC," Proc. SPIE 6517, 651709 (2007).
[CrossRef]

S.-I. Han, E. Weisbrod, J. R. Wasson, R. Gregory, Q. Xie, and P. J. S. Mangat, "Development of phase shift masks for extreme ultra violet lithography and optical evaluation of phase shift materials," Proc. SPIE 5374, 261-270 (2004).
[CrossRef]

S.-I. Han, E. Weisbrod, Q. Xie, and P. J. S. Mangat, "Design and method of fabricating phase-shift masks for extreme ultraviolet lithography by partial etching into the EUV multilayer mirror," Proc. SPIE 5037, 314-330 (2003).
[CrossRef]

Other (5)

International Technology Roadmap for Semiconductors 2006 Update (Semiconductor Industry Association, 2006).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

B. G. Eynon and B. Wu, Photomask Fabrication Technology (McGraw-Hill, 2005).

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of a hybrid-type Att-PSM for extreme ultraviolet lithography with the following two patterns: (a) spacer stack and (b) absorber stack.

Fig. 2
Fig. 2

(a) Reflectance ( R 1 E ) and (b) reflection phase ( Φ RE ) of the multilayer stack at a wavelength of 13.5 nm as a function of the insertion position and the thickness of the spacer.

Fig. 3
Fig. 3

Admittance diagram of the [ Al 2 O 3 / TaN ] absorber stack at a wavelength of 257 nm when the spacer is located at the bottom.

Fig. 4
Fig. 4

Attenuated reflectance ratio R 2 E / R 1 E and phase shift of the hybrid-type Att-PSM for the bottom spacer at a wavelength of 13.5 nm as a function of the thickness of the spacer.

Fig. 5
Fig. 5

Contour map of Δ Φ E at a wavelength of 13.5 nm as a function of the thicknesses of TaN and Al 2 O 3 layers in the absorber stack, when the spacer of 14 nm thickness is located at the top of the spacer stack. The arrow indicates the thicknesses of Al 2 O 3 and TaN layers, which provide Δ Φ E = 181.32 ° , R 2 E = 0.96 % , and R 2 D = 0.88 % at [ Al 2 O 3 ( 29 nm ) / TaN ( 30 nm ) ] .

Fig. 6
Fig. 6

Contrast of hybrid-type Att-PSMs for the bottom and top spacers in the DUV regime.

Tables (1)

Tables Icon

Table 1 Optical Constants of Materials at Wavelengths of 13.5 and 257 nm

Metrics