Abstract

A new optical monitoring system has been developed that allows recording of transmission spectra in the wavelength range between 400 and 920  nm of a growing optical coating during deposition. Several kinds of thin film sample have been prepared by use of a hybrid monitoring strategy that is essentially based on a combination of quartz monitoring and in situ transmission spectra measurements. We demonstrate and discuss the applicability of our system for reengineering procedures of high-low stacks and measurements of small vacuum or thermal shifts of optical coatings.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kruschwitz, "Software tools speed optical thin-film design," Laser Focus World 39(6), 157-166 (2003).
  2. A. V. Tikhonravov and M. K. Trubetskov, "Computational manufacturing as a bridge between design and production," Appl. Opt. 44, 6877-6884 (2005).
    [CrossRef] [PubMed]
  3. B. Vidal, A. Fornier, and E. Pelletier, "Optical monitoring of nonquarterwave multilayer filters," Appl. Opt. 17, 1038-1047 (1978).
    [CrossRef] [PubMed]
  4. F. J. Van Milligen, B. Bovard, M. R. Jacobson, J. Mueller, R. Potoff, R. L. Shoemaker, and H. A. Macleod, "Development of an automated scanning monochromator for monitoring thin films," Appl. Opt. 24, 1799-1802 (1985).
    [CrossRef] [PubMed]
  5. B. Vidal, A. Fornier, and E. Pelletier, "Wideband optical monitoring of nonquarterwave multilayer filters," Appl. Opt. 18, 3851-3856 (1979).
    [PubMed]
  6. H. A. Macleod, "Monitoring of optical coatings," Appl. Opt. 20, 82-89 (1981).
    [CrossRef] [PubMed]
  7. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, "Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring," Appl. Opt. 45, 7026-7034 (2006).
    [CrossRef] [PubMed]
  8. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, "Statistical approach to choosing a strategy of monochromatic monitoring of optical coating production," Appl. Opt. 45, 7863-7870 (2006).
    [CrossRef] [PubMed]
  9. J. A. Dobrowolski, F. C. Ho, and A. Waldorf, "Determination of optical constants of thin film coating materials based on inverse synthesis," Appl. Opt. 22, 3191-3200 (1983).
    [CrossRef] [PubMed]
  10. JETI Technische Instrumente GmbH, http://www.jeti.com.
  11. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, "Optical broadband monitoring of conventional and ion processes," Appl. Opt. 45, 1495-1501 (2006).
    [CrossRef] [PubMed]
  12. A. V. Tikhonravov and M. K. Trubetskov, "Online characterization and reoptimization of optical coatings," Proc. SPIE 5250, 406-413 (2003).
    [CrossRef]
  13. A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, "Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films," Appl. Opt. 41, 2555-2560 (2002).
    [CrossRef] [PubMed]
  14. A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, "Using comb-like instrumental functions in high-resolution spectroscopy," Meas. Sci. Technol. 8, 864-870 (1997).
    [CrossRef]
  15. R. M. Smith, "How linear are typical CCDs?" Exp. Astron. 8, 59-72 (1998).
    [CrossRef]
  16. LCalc software, lcalc@scidev.de.
  17. A. Duparre and D. Ristau, "Measurement problem," in Optical Interference Coatings Topical Meeting 2007 (Optical Society of America, 2007), poster ThB1.

2007

A. Duparre and D. Ristau, "Measurement problem," in Optical Interference Coatings Topical Meeting 2007 (Optical Society of America, 2007), poster ThB1.

2006

2005

2003

J. Kruschwitz, "Software tools speed optical thin-film design," Laser Focus World 39(6), 157-166 (2003).

A. V. Tikhonravov and M. K. Trubetskov, "Online characterization and reoptimization of optical coatings," Proc. SPIE 5250, 406-413 (2003).
[CrossRef]

2002

1998

R. M. Smith, "How linear are typical CCDs?" Exp. Astron. 8, 59-72 (1998).
[CrossRef]

1997

A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, "Using comb-like instrumental functions in high-resolution spectroscopy," Meas. Sci. Technol. 8, 864-870 (1997).
[CrossRef]

1985

1983

1981

1979

1978

Amotchkina, T. V.

Bovard, B.

Dobrowolski, J. A.

Duparre, A.

A. Duparre and D. Ristau, "Measurement problem," in Optical Interference Coatings Topical Meeting 2007 (Optical Society of America, 2007), poster ThB1.

Duparré, A.

Ehlers, H.

Fornier, A.

Gross, T.

Günster, S.

Ho, F. C.

Jacobson, M. R.

Kaminskii, A. S.

A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, "Using comb-like instrumental functions in high-resolution spectroscopy," Meas. Sci. Technol. 8, 864-870 (1997).
[CrossRef]

Kokarev, M. A.

Kosarev, E. L.

A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, "Using comb-like instrumental functions in high-resolution spectroscopy," Meas. Sci. Technol. 8, 864-870 (1997).
[CrossRef]

Kruschwitz, J.

J. Kruschwitz, "Software tools speed optical thin-film design," Laser Focus World 39(6), 157-166 (2003).

Lappschies, M.

Lavrov, E. V.

A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, "Using comb-like instrumental functions in high-resolution spectroscopy," Meas. Sci. Technol. 8, 864-870 (1997).
[CrossRef]

Macleod, H. A.

Mueller, J.

Pelletier, E.

Potoff, R.

Quesnel, E.

Ristau, D.

Shoemaker, R. L.

Smith, R. M.

R. M. Smith, "How linear are typical CCDs?" Exp. Astron. 8, 59-72 (1998).
[CrossRef]

Tikhonravov, A. V.

Trubetskov, M. K.

Van Milligen, F. J.

Vidal, B.

Waldorf, A.

Appl. Opt.

B. Vidal, A. Fornier, and E. Pelletier, "Optical monitoring of nonquarterwave multilayer filters," Appl. Opt. 17, 1038-1047 (1978).
[CrossRef] [PubMed]

B. Vidal, A. Fornier, and E. Pelletier, "Wideband optical monitoring of nonquarterwave multilayer filters," Appl. Opt. 18, 3851-3856 (1979).
[PubMed]

H. A. Macleod, "Monitoring of optical coatings," Appl. Opt. 20, 82-89 (1981).
[CrossRef] [PubMed]

J. A. Dobrowolski, F. C. Ho, and A. Waldorf, "Determination of optical constants of thin film coating materials based on inverse synthesis," Appl. Opt. 22, 3191-3200 (1983).
[CrossRef] [PubMed]

F. J. Van Milligen, B. Bovard, M. R. Jacobson, J. Mueller, R. Potoff, R. L. Shoemaker, and H. A. Macleod, "Development of an automated scanning monochromator for monitoring thin films," Appl. Opt. 24, 1799-1802 (1985).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, "Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films," Appl. Opt. 41, 2555-2560 (2002).
[CrossRef] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, "Computational manufacturing as a bridge between design and production," Appl. Opt. 44, 6877-6884 (2005).
[CrossRef] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, "Optical broadband monitoring of conventional and ion processes," Appl. Opt. 45, 1495-1501 (2006).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, "Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring," Appl. Opt. 45, 7026-7034 (2006).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, "Statistical approach to choosing a strategy of monochromatic monitoring of optical coating production," Appl. Opt. 45, 7863-7870 (2006).
[CrossRef] [PubMed]

Exp. Astron.

R. M. Smith, "How linear are typical CCDs?" Exp. Astron. 8, 59-72 (1998).
[CrossRef]

Laser Focus World

J. Kruschwitz, "Software tools speed optical thin-film design," Laser Focus World 39(6), 157-166 (2003).

Meas. Sci. Technol.

A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, "Using comb-like instrumental functions in high-resolution spectroscopy," Meas. Sci. Technol. 8, 864-870 (1997).
[CrossRef]

Proc. SPIE

A. V. Tikhonravov and M. K. Trubetskov, "Online characterization and reoptimization of optical coatings," Proc. SPIE 5250, 406-413 (2003).
[CrossRef]

Other

JETI Technische Instrumente GmbH, http://www.jeti.com.

LCalc software, lcalc@scidev.de.

A. Duparre and D. Ristau, "Measurement problem," in Optical Interference Coatings Topical Meeting 2007 (Optical Society of America, 2007), poster ThB1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic concept and experimental setup of the OptiMon system.

Fig. 2
Fig. 2

Implementation of OptiMon into the Leybold Syrus Pro 1100 deposition plant.

Fig. 3
Fig. 3

Transmittance of a Ta 2 O 5 coating measured ex situ with the PerkinElmer Lambda 900 (solid curve) and in situ with OptiMon (open circles).

Fig. 4
Fig. 4

Transmittance of the uncoated substrate and a Ta 2 O 5 coating (no ion assistance during deposition) measured with OptiMon in vacuum and air.

Fig. 5
Fig. 5

Transmittance of the uncoated substrate and a Ta 2 O 5 coating (ion assistance during deposition) measured with OptiMon in vacuum and air.

Fig. 6
Fig. 6

Vacuum–air shift in transmittance of a Ta 2 O 5 coating (ion assistance during deposition) calculated with OptiMon measurements in vacuum and air.

Fig. 7
Fig. 7

Left, target thickness of Ta 2 O 5 layers (dotted line) and modeled thicknesses based on transmittance measurements of the completed coating with the PerkinElmer Lambda 900 (white bar) and results from OptiMon (gray bar). Right, charge logging calculated deposition time for Ta 2 O 5 layers.

Fig. 8
Fig. 8

In situ measured transmittance of a quarter-wave stack for 900   nm before (dotted curve) and after (solid curve) crucible replacement and quartz crystal recalibration based on OptiMon results.

Fig. 9
Fig. 9

Right: Refractive index profile (wavelength 550   nm ) of the deposited beamsplitter. Left: Target (X) and theoretical performance (solid line) of the beamsplitter.

Fig. 10
Fig. 10

Theoretical and OptiMon-measured transmittance of a normal incidence 50% beam splitter for three deposition strategies; the dashed gray line indicates the end of the specified spectral range.

Fig. 11
Fig. 11

Designed and OptiMon-calculated physical thickness of layers of the beam splitter for three deposition strategies: light gray, theoretical design; gray, strategy 1; dark gray, strategy 2; black, strategy 3.

Tables (1)

Tables Icon

Table 1 Calculated MF for Transmittance and Layer Thickness

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

920   nm
( 400 920   nm )
Ta 2 O 5
203.6   nm
500   nm
500   nm
Ta 2 O 5
Δ T = T vacuum T air ,
SiO 2
Ta 2 O 5
Ta 2 O 5
0.25   nm
SiO 2
450   nm
700   nm
700   nm
Ta 2 O 5
SiO 2
( 400 700   nm )
920   nm
MF1 = 1 301 j = 0 300 [ T ( λ j ) 1 % 50 ] 2   with   λ j = ( 400 + j ) 1   nm .
Ta 2 O 5
SiO 2
MF2 = 1 10 j = 1 10 [ d j d j design 1   nm ] 2 .
Ta 2 O 5
Ta 2 O 5
Ta 2 O 5
Ta 2 O 5
Ta 2 O 5
Ta 2 O 5
900   nm
550   nm

Metrics